KLASIFIKASI PENYAKIT PADA DAUN TANAMAN KENTANG BERBASIS DEEP LEARNING
- SAFRIZAL
- 14210254
ABSTRAK
Kentang merupakan salah satu tanaman umbi-umbian yang banyak dikonsumsi di seluruh dunia. Penyakit pada tanaman menjadi salah satu faktor utama yang mempengaruhi hasil panen. Pada penelitian ini menggunakan model Deep Learning untuk menemukan penyakit pada tanaman daun kentang, yaitu CNN, ResNet50, VGG16. Ketiga model dikombinasikan menggunakan segmentasi U-Net untuk mengklasifikasikan gambar penyakit daun dan menghasilkan model yang robust. Model CNN pada dataset PlantVillage berhasil mencapai akurasi 97.00% dengan precision dan recall yang sangat baik. Model ResNet50 pada dataset PlantVillage mencapai akurasi terbaik sebesar 89.50%, sementara pada dataset PlantDoc hanya mencapai akurasi 68.75%. Model VGG16 menunjukkan hasil yang luar biasa pada dataset PlantVillage, tetapi pada dataset PlantDoc performa turun dengan akurasi 68.75%. Hal ini disebabkan keterbatasan data dan variasi dalam dataset PlantDoc.
Kata kunci: Penyakit Tanaman, Deep Learning, PlantVillage, PlantDoc, U-Net
KATA KUNCI
Deep Learning,PlantVillage,PlantDOc,U-Net
DAFTAR PUSTAKA
[1] E. Moupojou et al., “FieldPlant: A Dataset of Field Plant Images for Plant Disease Detection and Classification With Deep Learning,” IEEE Access, vol. 11, no. February, pp. 35398–35410, 2023, doi: 10.1109/ACCESS.2023.3263042.
[2] S. R. Athawale and K. A. Apte, “Potato Plant Leaf Disease Detection Using CNN Model,” Interantional J. Sci. Res. Eng. Manag., vol. 07, no. 09, pp. 1–11, 2023, doi: 10.55041/ijsrem25770.
[3] Z. Saeed, M. Urooj Khan, A. Raza, N. Sajjad, S. Naz, and A. Salal, “Identification of Leaf Diseases in Potato Crop Using Deep Convolutional Neural Networks (DCNNs),” in 2021 16th International Conference on Emerging Technologies (ICET), 2021, pp. 1–6. doi: 10.1109/ICET54505.2021.9689807.
[4] S. S. G, P. A, U. M. G, Y. Chandna, S. Midhath, and S. M. S, “Early and Late Blight Disease Detection in Potato,” in 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), 2023, pp. 1–7. doi: 10.1109/ICCCNT56998.2023.10307747.
[5] L.-H. Li and R. Tanone, “Disease Identification in Potato Leaves using Swin Transformer,” in 2023 17th International Conference on Ubiquitous Information Management and Communication (IMCOM), 2023, pp. 1–5. doi: 10.1109/IMCOM56909.2023.10035609.
[6] A. Khorramifar, M. Rasekh, H. Karami, U. Malaga-Tobo?a, and M. Gancarz, “A Machine Learning Method for Classification and Type Sensor-Array,” Sensors (Basel), 2021.
[7] K. Rymuza et al., “The effect of light exposures on the content of harmful substances in edible potato tuber,” Agric., vol. 10, no. 5, pp. 1–11, 2020, doi: 10.3390/agriculture10050139.
[8] R. M. J. Al-Akkam and M. S. M. Altaei, “Plants Leaf Diseases Detection Using Deep Learning,” Iraqi J. Sci., vol. 63, no. 2, pp. 801–816, 2022, doi: 10.24996/ijs.2022.63.2.34.
[9] K. M. Gold et al., “Hyperspectral measurements enable pre-symptomatic detection and differentiation of contrasting physiological effects of late blight 57 Program Studi Ilmu Komputer (S2) FTI Universitas Nusa Mandiri and early blight in potato,” Remote Sens., vol. 12, no. 2, 2020, doi: 10.3390/rs12020286.
[10] W. Xue, K. G. Haynes, and X. Qu, “Characterization of early blight resistance in potato cultivars,” Plant Dis., vol. 103, no. 4, pp. 629–637, 2019, doi: 10.1094/PDIS-05-18-0794-RE.
[11] Z.-U.-N. M. M. A. F. S. K. M. S. S. M. Rabbia Mahum Haris Munir and I. Tlili, “A novel framework for potato leaf disease detection using an efficient deep learning model,” Hum. Ecol. Risk Assess. An Int. J., vol. 29, no. 2, pp. 303–326, 2023, doi: 10.1080/10807039.2022.2064814.
[12] R. A. Sholihati, I. A. Sulistijono, A. Risnumawan, and E. Kusumawati, “Potato Leaf Disease Classification Using Deep Learning Approach,” IES 2020 - Int. Electron. Symp. Role Auton. Intell. Syst. Hum. Life Comf., pp. 392–397, 2020, doi: 10.1109/IES50839.2020.9231784.
[13] M. A. Islam and M. H. Sikder, “A Deep Learning Approach to Classify the Potato Leaf Disease,” J. Adv. Math. Comput. Sci., vol. 37, no. 12, pp. 143–155, 2022, doi: 10.9734/jamcs/2022/v37i121735.
[14] A. Walid and T. Roy, “Deep Learning-Based Potato Leaf Disease Detection Using CNN in the Agricultural System,” vol. 13, no. 6, pp. 9–22, 2023, doi: 10.5815/ijem.2023.06.02.
[15] A. Zahan, M. S. Hossain, Z. Rahman, and S. K. A. Shezan, “Smart home iot use case with elliptic curve based digital signature: An evaluation on security and performance analysis,” Int. J. Adv. Technol. Eng. Explor., vol. 7, no. 62, pp. 11– 19, 2020, doi: 10.19101/IJATEE.2019.650070.
[16] X. Li, Y. Zhou, J. Liu, L. Wang, J. Zhang, and X. Fan, “The Detection Method of Potato Foliage Diseases in Complex Background Based on Instance Segmentation and Semantic Segmentation,” Front. Plant Sci., vol. 13, no. July, pp. 1–13, 2022, doi: 10.3389/fpls.2022.899754.
[17] Hilman Ferdinandus Pardede, Penerapan Pembelajaran Mesin (Machine Learning) dan Pembelajaran Dalam (Deep Learning) Berkinerja Tinggi untuk Mendukung Sektor Pertanian di Indonesia. 2023. doi: 10.55981/brin.872.
[18] J. Chen, J. Chen, D. Zhang, Y. Sun, and Y. A. Nanehkaran, “Using deep transfer learning for image-based plant disease identification,” Comput. Electron. Agric., vol. 173, p. 105393, 2020, doi: 58 Program Studi Ilmu Komputer (S2) FTI Universitas Nusa Mandiri https://doi.org/10.1016/j.compag.2020.105393.
[19] M. J. Bauske, A. P. Robinson, and N. C. Gudmestad, “Early Blight in Potato — Publications,” North Dekota State Univ. Extention, no. June, p. 8, 2018, [Online]. Available: https://www.ag.ndsu.edu/publications/crops/early-blight- in-potato
[20] G. Latif, S. E. Abdelhamid, R. E. Mallouhy, J. Alghazo, and Z. A. Kazimi, “Deep Learning Utilization in Agriculture: Detection of Rice Plant Diseases Using an Improved CNN Model,” Plants, vol. 11, no. 17, 2022, doi: 10.3390/plants11172230.
[21] W. Bismi, D. Riana, and A. S. Hewiz, “Disease Identification on Fig Leaf Images Using Deep Learning Method,” Int. J. Adv. Sci. Comput. Eng., vol. 6, no. 2, pp. 57–63, 2024, doi: 10.62527/ijasce.6.2.203.
[22] N. T. Sinshaw, B. G. Assefa, S. K. Mohapatra, and A. M. Beyene, “Applications of Computer Vision on Automatic Potato Plant Disease Detection: A Systematic Literature Review,” Comput. Intell. Neurosci., vol. 2022, p. 7186687, 2022, doi: 10.1155/2022/7186687.
[23] R. Gruetzemacher and J. Whittlestone, “The transformative potential of artificial intelligence,” Futures, vol. 135, no. November 2021, p. 102884, 2022, doi: 10.1016/j.futures.2021.102884.
[24] S. U. Hassan, J. Ahamed, and K. Ahmad, “Analytics of machine learning-based algorithms for text classification,” Sustain. Oper. Comput., vol. 3, no. July 2021, pp. 238–248, 2022, doi: 10.1016/j.susoc.2022.03.001.
[25] P. Bhavsar, I. Safro, N. Bouaynaya, R. Polikar, and D. Dera, Machine Learning in Transportation Data Analytics. Elsevier Inc., 2017. doi: 10.1016/B978-0-12- 809715-1.00012-2.
[26] S. Sharma and P. Chaudhary, “Machine learning and deep learning,” Quantum Comput. Artif. Intell. Train. Mach. Deep Learn. Algorithms Quantum Comput., pp. 71–84, 2023, doi: 10.1515/9783110791402-004.
[27] D. Muchlinski, “Machine learning and deep learning,” Elgar Encycl. Technol. Polit., pp. 114–118, 2022, doi: 10.4337/9781800374263.machine.learning.deep.
[28] W. S. Mcculloch and W. Pitts, “A logical calculus nervous activity,” Bull. Math. Biol., vol. 52, no. l, pp. 99–115, 1990. 59 Program Studi Ilmu Komputer (S2) FTI Universitas Nusa Mandiri
[29] J. Rashid, I. Khan, G. Ali, S. H. Almotiri, M. A. Alghamdi, and K. Masood, “Multi-level deep learning model for potato leaf disease recognition,” Electron., vol. 10, no. 17, 2021, doi: 10.3390/electronics10172064.
[30] D. Javaheri, P. Lalbakhsh, and M. Hosseinzadeh, “A Novel Method for Detecting Future Generations of Targeted and Metamorphic Malware Based on Genetic Algorithm,” IEEE Access, vol. 9, pp. 69951–69970, 2021, doi: 10.1109/ACCESS.2021.3077295.
[31] S. K. Roy, G. Krishna, S. R. Dubey, and B. B. Chaudhuri, “HybridSN: Exploring 3-D–2-D CNN Feature Hierarchy for Hyperspectral Image Classification,” IEEE Geosci. Remote Sens. Lett., vol. 17, no. 2, pp. 277–281, 2020, doi: 10.1109/LGRS.2019.2918719.
[32] M. A. Hasan, Y. Riyanto, and D. Riana, “Grape leaf image disease classification using CNN-VGG16 model,” J. Teknol. dan Sist. Komput., vol. 9, no. 4, pp. 218– 223, 2021, doi: 10.14710/jtsiskom.2021.14013.
[33] H. F. Pardede, E. Suryawati, D. Krisnandi, R. S. Yuwana, and V. Zilvan, “Machine Learning Based Plant Diseases Detection: A Review,” Proceeding - 2020 Int. Conf. Radar, Antenna, Microwave, Electron. Telecommun. ICRAMET 2020, pp. 212–217, 2020, doi: 10.1109/ICRAMET51080.2020.9298619.
[34] F. M. Shiri, T. Perumal, N. Mustapha, and R. Mohamed, “A Comprehensive Overview and Comparative Analysis on Deep Learning Models: CNN, RNN, LSTM, GRU,” 2023, [Online]. Available: http://arxiv.org/abs/2305.17473
[35] R. Al-Akkam and M. Altaei, “Plants Leaf Diseases Detection Using Deep Learning,” Iraqi J. Sci., pp. 801–816, Feb. 2022, doi: 10.24996/ijs.2022.63.2.34.
[36] S. Hadianti, F. Aziz, D. Nur Sulistyowati, D. Riana, R. Saputra, and Kurniawantoro, “Identification of Potato Plant Pests Using the Convolutional Neural Network VGG16 Method,” J. Med. Informatics Technol., pp. 39–44, 2024, doi: 10.37034/medinftech.v2i2.37.
[37] P. Hridayami, I. K. G. D. Putra, and K. S. Wibawa, “Fish species recognition using VGG16 deep convolutional neural network,” J. Comput. Sci. Eng., vol. 13, no. 3, pp. 124–130, 2019, doi: 10.5626/JCSE.2019.13.3.124.
[38] N. Aini and H. F. Pardede, “Evaluation of Emotion Recognition in Facial Image Using Attentive Deep Convolutional Neural Network,” 2023 Int. Conf. Inf. 60 Program Studi Ilmu Komputer (S2) FTI Universitas Nusa Mandiri Technol. Res. Innov. ICITRI 2023, pp. 34–37, 2023, doi: 10.1109/ICITRI59340.2023.10249341.
[39] A. A. Alatawi, S. M. Alomani, N. I. Alhawiti, and M. Ayaz, “Plant Disease Detection using AI based VGG-16 Model,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 4, pp. 718–727, 2022, doi: 10.14569/IJACSA.2022.0130484.
[40] A. Cherid, “Penerapan Convolutional Neural Network Pada Klasifikasi Tanaman Menggunakan ResNet50,” SIMKOM, vol. 8, pp. 221–228, Jul. 2023, doi: 10.51717/simkom.v8i2.191.
[41] A. Jalil Rozaqi, A. Sunyoto, and M. R. Arief, “Implementation of Transfer Learning in the Convolutional Neural Network Algorithm for Identification of Potato Leaf Disease,” in Procedia of Engineering and Life Science, 2021. doi: 10.21070/pels.v1i1.820.
[42] T. H. Nguyen, T. N. Nguyen, and B. V. Ngo, “A VGG-19 Model with Transfer Learning and Image Segmentation for Classification of Tomato Leaf Disease,” AgriEngineering, vol. 4, no. 4, pp. 871–887, 2022, doi: 10.3390/agriengineering4040056.
[43] A. Yaman, Yaniasih, R. Saville, R. Puspasari, H. Albasri, and H. F. Pardede, “A Grouper Fish Mortality Prediction Model Using Transfer Learning Approach,” Int. Conf. Artif. Intell. Mechatronics Syst. AIMS 2024, pp. 1–6, 2024, doi: 10.1109/AIMS61812.2024.10513177.
[44] N. Hassanpour and A. Ghavami, “Deep Learning-based Bio-Medical Image Segmentation using UNet Architecture and Transfer Learning,” 2023, [Online]. Available: http://arxiv.org/abs/2305.14841
[45] D. Riana, S. Rahayu, M. Hasan, and Anton, “Comparison of segmentation and identification of swietenia mahagoni wood defects with augmentation images,” Heliyon, vol. 7, no. 6, p. e07417, 2021, doi: 10.1016/j.heliyon.2021.e07417.
[46] J. Fu, Y. Zhao, and G. Wu, “Potato Leaf Disease Segmentation Method Based on Improved UNet,” Appl. Sci., vol. 13, no. 20, 2023, doi: 10.3390/app132011179.
[47] L. G. Divyanth, A. Ahmad, and D. Saraswat, “A two-stage deep-learning based segmentation model for crop disease quantification based on corn field imagery,” Smart Agric. Technol., vol. 3, no. January 2022, 2023, doi: 10.1016/j.atech.2022.100108. 61 Program Studi Ilmu Komputer (S2) FTI Universitas Nusa Mandiri
[48] Y. Deng et al., “An Effective Image-Based Tomato Leaf Disease Segmentation Method Using MC-UNet,” Plant Phenomics, vol. 5, pp. 1–17, 2023, doi: 10.34133/plantphenomics.0049.
[49] D. Riana, M. Jamil, S. Hadianti, J. Na’am, H. Sutanto, and R. Sukwadi, “Model of Watershed Segmentation in Deep Learning Method to Improve Identification of Cervical Cancer at Overlay Cells,” TEM J., vol. 12, no. 2, pp. 813–819, 2023, doi: 10.18421/TEM122-26.
[50] TrivediPayal et al., “Plant Leaf Disease Detection and Classification Using Segmentation Encoder Techniques,” The Open Agriculture Journal, vol. 18. Bentham Science, Jul. 04, 2024. doi: 10.2174/0118743315321139240627092707.
[51] S. V, A. Bhagwat, and V. Laxmi, “LeafSpotNet: A deep learning framework for detecting leaf spot disease in jasmine plants,” Artif. Intell. Agric., vol. 12, pp. 1–18, 2024, doi: 10.1016/j.aiia.2024.02.002.
[52] L. M. Abouelmagd, M. Y. Shams, H. S. Marie, and A. E. Hassanien, “An optimized capsule neural networks for tomato leaf disease classification,” Eurasip J. Image Video Process., vol. 2024, no. 1, 2024, doi: 10.1186/s13640- 023-00618-9.
[53] M. Shoaib et al., “A deep learning-based model for plant lesion segmentation, subtype identification, and survival probability estimation,” Front. Plant Sci., vol. 13, no. December, pp. 1–15, 2022, doi: 10.3389/fpls.2022.1095547.
[54] F. Arshad et al., “PLDPNet: End-to-end hybrid deep learning framework for potato leaf disease prediction,” Alexandria Eng. J., vol. 78, no. July, pp. 406– 418, 2023, doi: 10.1016/j.aej.2023.07.076.
[55] D. Singh, N. Jain, P. Jain, P. Kayal, S. Kumawat, and N. Batra, “PlantDoc: A dataset for visual plant disease detection,” ACM Int. Conf. Proceeding Ser., pp. 249–253, 2020, doi: 10.1145/3371158.3371196.
[56] A. Maryum, M. U. Akram, and A. A. Salam, “Cassava Leaf Disease Classification using Deep Neural Networks,” HONET 2021 - IEEE 18th Int. Conf. Smart Communities Improv. Qual. Life using ICT, IoT AI, no. Honet, pp. 32–37, 2021, doi: 10.1109/HONET53078.2021.9615488.
[57] R. Sharma et al., “Plant disease diagnosis and image classification using deep learning,” Comput. Mater. Contin., vol. 71, no. 2, pp. 2125–2140, 2022, doi: 62 Program Studi Ilmu Komputer (S2) FTI Universitas Nusa Mandiri 10.32604/cmc.2022.020017.
[58] doi: 10. 1088/174.-6596/1962/1/012024. Xian, Tan Soo[1] T. S. Xian and R. Ngadiran, “Plant Diseases Classification using Machine Learning,” J. Phys. Conf. Ser., vol. 1962, no. 1, 2021 and R. Ngadiran, “Plant Diseases Classification using Machine Learning,” J. Phys. Conf. Ser., vol. 1962, no. 1, 2021, doi: 10.1088/1742-6596/1962/1/012024.
[59] I. Singh, A. Jaiswal, and N. Sachdeva, “Comparative Analysis of Deep Learning Models for Potato Leaf Disease Detection,” Proc. 14th Int. Conf. Cloud Comput. Data Sci. Eng. Conflu. 2024, pp. 421–425, 2024, doi: 10.1109/Confluence60223.2024.10463314.
[60] J. Yao, S. N. Tran, S. Sawyer, and S. Garg, “arXiv : 2310 . 12509v1 [ cs . CV ] 19 Oct 2023 Machine Learning for Leaf Disease Classification : Data , Techniques and Applications,” 2021
Detail Informasi
Tesis ini ditulis oleh :
- Nama : SAFRIZAL
- NIM : 14210254
- Prodi : Ilmu Komputer
- Kampus : Margonda
- Tahun : 2024
- Periode : I
- Pembimbing : Prof. Dr. Hilman Ferdinandus Pardede, S.T., M.Eng
- Asisten :
- Kode : 0011.S2.IK.TESIS.I.2024
- Diinput oleh : SGM
- Terakhir update : 17 Februari 2025
- Dilihat : 53 kali
TENTANG PERPUSTAKAAN

E-Library Perpustakaan Universitas Nusa Mandiri merupakan
platform digital yang menyedikan akses informasi di lingkungan kampus Universitas Nusa Mandiri seperti akses koleksi buku, jurnal, e-book dan sebagainya.
INFORMASI
Alamat : Jln. Jatiwaringin Raya No.02 RT08 RW 013 Kelurahan Cipinang Melayu Kecamatan Makassar Jakarta Timur
Email : perpustakaan@nusamandiri.ac.id
Jam Operasional
Senin - Jumat : 08.00 s/d 20.00 WIB
Isitirahat Siang : 12.00 s/d 13.00 WIB
Istirahat Sore : 18.00 s/d 19.00 WIB
Perpustakaan Universitas Nusa Mandiri @ 2020