Integrasi YOLOv8 dan EasyOCR untuk Deteksi dan Identifikasi Plat Nomor Kendaraan Indonesia

  • Dika Putri Metalica
  • 14220003

ABSTRAK

Studi ini meneliti efektivitas YOLOv8 dan EasyOCR dalam deteksi dan pengenalan plat nomor kendaraan di Indonesia. Fokus utamanya adalah mengatasi tantangan ETLE dalam mengidentifikasi plat nomor dengan berbagai warna latar belakang. Metodologi mencakup pengumpulan dan augmentasi dataset. Model YOLOv8 dioptimalkan dengan batch size 16, 20 epochs, dan learning rate 0.001. Hasil evaluasi pada data training menunjukkan box_loss 1.074, mAP@0.5 0.947, precision 0.943, recall 0.953, F1-Score 1.00, dengan waktu training 0.559 jam, dan akurasi deteksi rata-rata di atas 85% untuk plat nomor single-class. EasyOCR menunjukkan akurasi tertinggi pada plat hitam (80.24%), diikuti plat kuning (69.40%), merah (69.26%), dan putih (64.21%). Kombinasi YOLOv8 dan EasyOCR efektif dalam berbagai kondisi, meskipun tantangan masih ada pada plat non-hitam.

Kata kunci: Plat Nomor, Yolov8, EasyOCR, Deteksi Karakter, Deep Learning

KATA KUNCI

Deep Learning,Deteksi Karakter


DAFTAR PUSTAKA

[1] Y. Shambharkar, S. Salagrama, K. Sharma, O. Mishra, and D. Parashar, “An Automatic Framework for Number Plate Detection using OCR and Deep Learning Approach,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 4, pp. 8–14, 2023, doi: 10.14569/IJACSA.2023.0140402.

[2] J. Sainui, C. Thepporn, and P. Chusuwan, “Thai License Plate Recognition using SSD MobileNet and EasyOCR,” in ACM International Conference Proceeding Series, Association for Computing Machinery, Jan. 2024, pp. 36– 41. doi: 10.1145/3645259.3645266.

[3] Y. Armala and M. Yasir, “Implementasi Electronic Traffic Law Enforcement (E-TLE) Di Wilayah Hukum Kepolisian Resor Bojonegoro,” Hukum, vol. 5, no. 1, pp. 32–44, 2022, [Online]. Available: https://ojs.ejournalunigoro.com/index.php/JUSTITIABLE/article/view/405

[4] A. R. Hanif, E. Nasrullah, and F. X. A. Setyawan, “Deteksi Karakter Plat Nomor Kendaraan Dengan Menggunakan Metode Optical Character Recognition (Ocr),” J. Inform. dan Tek. Elektro Terap., vol. 11, no. 1, pp. 109–117, 2023, doi: 10.23960/jitet.v11i1.2897.

[5] Rezty Amalia Aras and Noor Akhmad Setiawan, “Comparison of Data Mining Classification Techniques for Heart Disease Prediction System,” J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 2, no. 2, pp. 85–90, 2022, doi: 10.55606/teknik.v2i2.672.

[6] GeeksForGeeks, “Object Detection vs Object Recognition vs Image Segmentation,” geeksforgeeks.org. Accessed: Jan. 01, 2024. [Online]. Available: https://www.geeksforgeeks.org/object-detection-vs-object- recognition-vs-image-segmentation/

[7] S. Hadianti, F. Aziz, D. Nur Sulistyowati, D. Riana, R. Saputra, and Kurniawantoro, “Identification of Potato Plant Pests Using the Convolutional Neural Network VGG16 Method,” J. Med. Informatics Technol., pp. 39–44, 2024, doi: 10.37034/medinftech.v2i2.37.

[8] N. Barrihadianto, “Mengenal Overfitting dan underfitting,” Medium. Accessed: Jan. 01, 2024. [Online]. Available: https://noerbarry.medium.com/mengenal- overfitting-dan-underfitting-e9e37be46c71 71 Program Studi Ilmu Komputer (S2) FTI Universitas Nusa Mandiri

[9] Y. Yanto, F. Aziz, and I. Irmawati, “Yolo-V8 Peningkatan Algoritma Untuk Deteksi Pemakaian Masker Wajah,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 3, pp. 1437–1444, 2023, doi: 10.36040/jati.v7i3.7047.

[10] SkillPlus, “Underfitting dan Overfitting Model,” 2019. Accessed: Jan. 01, 2024. [Online]. Available: https://skillplus.web.id/underfitting-dan-overfitting- model/

[11] W. Bismi, D. Riana, and A. S. Hewiz, “Disease Identification on Fig Leaf Images Using Deep Learning Method,” Int. J. Adv. Sci. Comput. Eng., vol. 6, no. 2, pp. 57–63, 2024, doi: 10.62527/ijasce.6.2.203.

[12] J. Sanjaya and M. Ayub, “Augmentasi Data Pengenalan Citra Mobil Menggunakan Pendekatan Random Crop, Rotate, dan Mixup,” J. Tek. Inform. dan Sist. Inf., vol. 6, no. 2, pp. 311–323, 2020, doi: 10.28932/jutisi.v6i2.2688.

[13] P. Sitompul, H. Okprana, A. Prasetio, and G. Artikel, “Identifikasi Penyakit Tanaman Padi Melalui Citra Daun Menggunakan DenseNet 201 Identification of Rice Plant Diseases Through Leaf Image Using DenseNet 201 Article Info ABSTRAK,” JOMLAI J. Mach. Learn. Artif. Intell., vol. 1, no. 2, pp. 143–150, 2022, doi: 10.55123/jomlai.v1i2.889.

[14] I. Cholissodin and A. A. Soebroto, “AI , MACHINE LEARNING & DEEP LEARNING ( Teori & Implementasi ),” no. July 2019, 2021.

[15] R. Chauhan, K. K. Ghanshala, and R. C. Joshi, “Convolutional Neural Network (CNN) for Image Detection and Recognition,” ICSCCC 2018 - 1st Int. Conf. Secur. Cyber Comput. Commun., pp. 278–282, 2018, doi: 10.1109/ICSCCC.2018.8703316.

[16] B. Dickson, “An introduction to object detection with deep learning.” Accessed: Jan. 01, 2024. [Online]. Available: https://bdtechtalks.com/2021/06/21/object- detection-deep-learning/

[17] R. Tang and K. Mao, “An improved GANS model for steel plate defect detection,” IOP Conf. Ser. Mater. Sci. Eng., vol. 790, no. 1, 2020, doi: 10.1088/1757-899X/790/1/012110.

[18] Fadlur Rochman dan Hartarto Junaedi, “IMPLEMENTASI TRANSFER LEARNING UNTUK IDENTIFIKASI ORDO TUMBUHAN MELALUI DAUN,” vol. 1, no. 6, pp. 672–679, 2020. 72 Program Studi Ilmu Komputer (S2) FTI Universitas Nusa Mandiri

[19] F. M. Adhari, T. F. Abidin, and R. Ferdhiana, “License Plate Character Recognition using Convolutional Neural Network,” J. Inf. Syst. Eng. Bus. Intell., vol. 8, no. 1, pp. 51–60, 2022, doi: 10.20473/jisebi.8.1.51-60.

[20] D. Hindarto and H. Santoso, “Plat Nomor Kendaraan dengan Convolution Neural Network,” J. Inov. Inform., vol. 6, no. 2, pp. 1–12, 2021, doi: 10.51170/jii.v6i2.202.

[21] M. N. Chan and T. Tint, “A Review on Advanced Detection Methods in Vehicle Traffic Scenes,” Proc. 6th Int. Conf. Inven. Comput. Technol. ICICT 2021, pp. 642–649, 2021, doi: 10.1109/ICICT50816.2021.9358791.

[22] C. H. Kang and S. Y. Kim, “Real-time object detection and segmentation technology: an analysis of the YOLO algorithm,” JMST Adv., vol. 5, no. 2–3, pp. 69–76, 2023, doi: 10.1007/s42791-023-00049-7.

[23] A. Sarhan, R. A. Rahem, B. Darwish, A. A. Attia, A. Sneed, and S. Hatem, “Egyptian car plate recognition based on YOLOv8 , Easy ? OCR , and CNN,” J. Electr. Syst. Inf. Technol., 2024, doi: 10.1186/s43067-024-00156-y.

[24] T. I. Cahyani, M. Zakiyamani, D. Riana, S. Hardianti, and P. Magister, “PERBANDINGAN AKURASI PENGENALAN KARAKTER PLAT NOMOR MENGGUNAKAN TESSERACT DAN DATA LATIH EMNIST COMPARISON ACCURACY CHARACTER RECOGNITION IN PLATE NUMBER USING TESSERACT AND EMNIST DATASET,” J. Inf. Technol. Comput. Sci., vol. 5, no. 2, 2022.

[25] K. K. S. V. A. Satheesh, N. Sai Akhila, D. Amarnadh, P. S. Swetha, A. V. Sohan, and V. Pardhiv, “EPRA International Journal of Research and Development (IJRD) AUTOMATED HELMET MONITORING SYSTEM USING DEEP LEARNING,” 2024, doi: 10.36713/epra2016.

[26] N. Haque, S. Islam, R. A. Tithy, and M. S. Uddin, “Automatic Bangla License Plate Recognition System for Low-Resolution Images,” 2022 4th Int. Conf. Sustain. Technol. Ind. 4.0, STI 2022, no. March, 2022, doi: 10.1109/STI56238.2022.10103289.

[27] T. Yang et al., “Evaluation and machine learning improvement of global hydrological model-based flood simulations,” Environ. Res. Lett., vol. 14, no. 11, 2019, doi: 10.1088/1748-9326/ab4d5e. 73 Program Studi Ilmu Komputer (S2) FTI Universitas Nusa Mandiri

[28] A. Bennour, N. Ben Aoun, O. I. Khalaf, F. Ghabban, W. K. Wong, and S. Algburi, “Contribution to pulmonary diseases diagnostic from X-ray images using innovative deep learning models,” Heliyon, vol. 10, no. 9, p. e30308, 2024, doi: 10.1016/j.heliyon.2024.e30308.

[29] R. Hesananda, D. Natasya, and N. Wiliani, “CLOTH BAG OBJECT DETECTION USING THE YOLO ALGORITHM (YOU ONLY SEE ONCE) V5,” J. Pilar Nusa Mandiri, vol. 18, no. 2, pp. 217–222, Feb. 2023, doi: 10.33480/pilar.v18i2.3019.

[30] S. Jaggia, A. Kelly, K. Lertwachara, and L. Chen, “Applying the CRISP-DM Framework for Teaching Business Analytics,” Decis. Sci. J. Innov. Educ., vol. 18, no. 4, pp. 612–634, 2020, doi: 10.1111/dsji.12222.

[31] U. Salimah, V. Maharani, and R. Nursyanti, “Automatic License Plate Recognition Using Optical Character Recognition,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1115, no. 1, p. 012023, 2021, doi: 10.1088/1757- 899x/1115/1/012023.

[32] H. Imam, K. Fathurrahman, C. Li-Yi, H. I. K. Fathurrahman, and C. Li-Yi, “Character Translation on Plate Recognition with Intelligence Approaches,” Bul. Ilm. Sarj. Tek. Elektro, vol. 4, no. 3, pp. 105–110, 2022, doi: 10.12928/biste.v4i3.7161.

[33] D. Salunke, R. Joshi, R. Patil, and S. Patinge, “Automatic Vehicle Plate Recognition using Deep Learning,” 14th Int. Conf. Adv. Comput. Control. Telecommun. Technol. ACT 2023, vol. 2023-June, no. March, pp. 3060–3065, 2023.

[34] P. Ravirathinam and A. Patawari, “Automatic license plate recognition for indian roads using faster-RCNN,” Proc. 11th Int. Conf. Adv. Comput. ICoAC 2019, pp. 275–281, 2019, doi: 10.1109/ICoAC48765.2019.246853.

[35] I. Nevindra, M. S. Larasati, and B. Kimberley, “Automatic Indonesian License Plate Recognition with YOLO As Object Detector,” Iconic Res. Eng. Journals, vol. 5, no. 6, pp. 184–190, 2021.

[36] B. Setiyono, D. A. Amini, and D. R. Sulistyaningrum, “Number plate recognition on vehicle using YOLO - Darknet,” J. Phys. Conf. Ser., vol. 1821, no. 1, 2021, doi: 10.1088/1742-6596/1821/1/012049. 74 Program Studi Ilmu Komputer (S2) FTI Universitas Nusa Mandiri

[37] Hendry and R. C. Chen, “Automatic License Plate Recognition via sliding- window darknet-YOLO deep learning,” Image Vis. Comput., vol. 87, pp. 47– 56, 2019, doi: 10.1016/j.imavis.2019.04.007.

[38] Y. A. Usen and C. Hayat, “Design and Build Vehicle Plate Detection System Using You Only Look Once Method Based on Android,” J. Tek. Inform., vol. 4, no. 4, pp. 807–818, 2023, doi: 10.52436/1.jutif.2023.4.4.791.

[39] K. Khotimah, M. T. Alawiy, and B. M. Basuki, “Pendeteksi Plat Nomor Kendaraan Bermotor Berbasis Algoritma YOLO ( You Only Look Once ) Menggunakan Kamera CCTV,” vol. 1, no. 1, pp. 1–8, 2023.

[40] L. Satya, M. R. D. Septian, M. W. Sarjono, M. Cahyanti, and E. R. Swedia, “SISTEM PENDETEKSI PLAT NOMOR POLISI KENDARAAN DENGAN ARSITEKTUR YOLOV8,” vol. 27, no. 2, pp. 757–765, 2023, doi: 10.46984/sebatik.v27i2.2374.

[41] K. Christoper Nugraha and E. M. Sipayung, “Deteksi Plat Nomor Kendaraan Menggunakan Algoritma Yolo Vehicle License Plate Detection Using Yolo Algorithm,” vol. VI, no. 2, pp. 605–611, 2023, [Online]. Available: http://dx.doi.org/10.30813/j-alu.v2i2.4739

[42] A. D. Limantara, L. D. Krisnawati, S. Winardi, and S. W. Mudjanarko, “Solusi Pengawasan Kebijakan Mengatasi Kemacetan Jalan dan Parkir Kota Berbasis Internet Cerdas,” Semin. Nas. Teknol. dan Rekayasa Inf., no. November, pp. 1– 6, 2017.

[43] R. A. Silaen, Syefrida Yulina, and K. D. K. Wardhani, “Sistem Pengenalan Karakter pada Plat Kendaraan Bermotor Menggunakan Profile Projection dan Algoritma Korelasi,” J. Aksara Komput. Terap., vol. 4, no. 2, pp. 116–123, 2015.

[44] M. Zakiyamani, T. I. Cahyani, D. Riana, and S. Hardianti, “Deteksi Dan Pengenalan Plat Karakter Nomor Kendaraan Menggunakan OpenCV Dan Deep Learning Berbasis Python,” INTECOMS J. Inf. Technol. Comput. Sci., vol. 5, no. 1, pp. 56–64, 2022, doi: 10.31539/intecoms.v5i1.3403.

[45] T. Hidayat, F. Aziz, D. Uki, and E. Saputri, “Resnet152V2 Architecture,” vol. 19, no. 2, pp. 130–139, 2022

Detail Informasi

Tesis ini ditulis oleh :

  • Nama : Dika Putri Metalica
  • NIM : 14220003
  • Prodi : Ilmu Komputer
  • Kampus : Margonda
  • Tahun : 2024
  • Periode : I
  • Pembimbing : Dr. Windu Gata, M.Kom
  • Asisten :
  • Kode : 0008.S2.IK.TESIS.I.2024
  • Diinput oleh : SGM
  • Terakhir update : 16 Februari 2025
  • Dilihat : 100 kali

TENTANG PERPUSTAKAAN


PERPUSTAKAAN UNIVERSITAS NUSA MANDIRI


E-Library Perpustakaan Universitas Nusa Mandiri merupakan platform digital yang menyedikan akses informasi di lingkungan kampus Universitas Nusa Mandiri seperti akses koleksi buku, jurnal, e-book dan sebagainya.


INFORMASI


Alamat : Jln. Jatiwaringin Raya No.02 RT08 RW 013 Kelurahan Cipinang Melayu Kecamatan Makassar Jakarta Timur

Email : perpustakaan@nusamandiri.ac.id

Jam Operasional
Senin - Jumat : 08.00 s/d 20.00 WIB
Isitirahat Siang : 12.00 s/d 13.00 WIB
Istirahat Sore : 18.00 s/d 19.00 WIB

Perpustakaan Universitas Nusa Mandiri @ 2020