Prediksi Nilai Mata Uang Emas Terhadap US Dollar (XAUUSD) Menggunakan Metode Hibrida Gated Recurrent Unit - Long Short-Term Memor
- Rio Mahendra Denta Saputra
- 14220005
ABSTRAK
Pasar Forex adalah pasar global untuk perdagangan mata uang. Pasar ini adalah yang terbesar dan paling likuid di dunia, dengan volume perdagangan harian yang mencapai triliunan dolar. Tujuan dari penelitian ini adalah untuk mengembangkan model prediktif yang akurat dalam meramalkan pergerakan harga emas terhadap dolar AS (XAUUSD) di pasar Forex. Penelitian ini mengintegrasikan teknik Data Mining dan analisis Time Series dengan algoritma deep learning, khususnya model hibrida GRU- LSTM. Data yang digunakan mencakup periode dari bulan Januari tahun 2021 hingga bulan Oktober tahun 2023, diperoleh dari investing.com. Data dievaluasi menggunakan dua set data yang dibagi dengan rasio data latih dan data uji sebesar 80:20 dan 85:15. Hasil penelitian menunjukkan bahwa model hibrida GRU-LSTM dengan epoch 50 serta lookback dan timestep sebesar 20 menghasilkan performa terbaik pada dataset dengan pembagian data 80:20 dengan RMSE 13.4908, MAE 9.8075, MAPE 0.5055, dan R² score 0.8964. Sedangkan performa terbaik pada dataset dengan pembagian data 85:15 diraih oleh model hibrida GRU-LSTM dengan epoch 100 serta lookback dan timestep sebesar 15 dengan RMSE 12.4676, MAE 8.8498, MAPE 0.4602, dan R² score 0.8923.
Kata kunci: Forex, Prediksi XAUUSD, GRU-LSTM, Time Series, Data Mining
KATA KUNCI
Forex,GRU-LSTM,Prediksi XAUUSD,Data Mining
DAFTAR PUSTAKA
[1] D. Majer?áková and M. Greguš, “The Creation of the Convenient Investment Strategy in Forex,” European Journal of Economics and Business Studies, vol. 5, no. 1, p. 80, Apr. 2019, doi: 10.26417/ejes.v5i1.p80-88.
[2] N. Nuraeni, P. Astuti, O. Irnawati, I. Darwati, and D. D. Harmoko, “High Accuracy in Forex Predictions Using the Neural Network Method Based on Particle Swarm Optimization,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Nov. 2020. doi: 10.1088/1742-6596/1641/1/012067.
[3] M. Ayitey Junior, P. Appiahene, and O. Appiah, “Forex market forecasting with two-layer stacked Long Short-Term Memory neural network (LSTM) and correlation analysis,” Journal of Electrical Systems and Information Technology, vol. 9, no. 1, Dec. 2022, doi: 10.1186/s43067-022-00054-1.
[4] I. Akil and I. Chaidir, “Prediksi Harga Saham Twitter Dengan Long Short- Term Memory Recurrent Neural Network,” INTI Nusa Mandiri, vol. 17, no. 1, pp. 1–7, Aug. 2022, doi: 10.33480/inti.v17i1.3277.
[5] D. S. Figueroa, “Role of Foreign Exchange Management in Currency Trading,” 2022.
[6] Sabar Sautomo and Hilman Ferdinandus Pardede, “Prediksi Belanja Pemerintah Indonesia Menggunakan Long Short-Term Memory (LSTM),” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 1, pp. 99–106, Feb. 2021, doi: 10.29207/resti.v5i1.2815.
[7] E. Fitri and S. N. Nugraha, “OPTIMASI KINERJA LINEAR REGRESSION, RANDOM FOREST REGRESSION DAN MULTILAYER PERCEPTRON PADA PREDIKSI HASIL PANEN,” INTI Nusa Mandiri, vol. 18, no. 2, pp. 210–217, Feb. 2024, doi: 10.33480/inti.v18i2.5269.
[8] H. F. Pardede, “Sentiment Analysis of Stocktwits Data with Word Vector and Gated Recurrent Unit.” [Online]. Available: https://drive.google.com/file/d/1RtUEwOBWLTs1JaV6on
[9] W. Gata et al., “Prediction of Teachers’ Lateness Factors Coming to School Using C4.5, Random Tree, Random Forest Algorithm,” 2019.
[10] M. YURTSEVER, “Gold Price Forecasting Using LSTM, Bi-LSTM and GRU,” European Journal of Science and Technology, Dec. 2021, doi: 10.31590/ejosat.959405.
[11] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling,” Dec. 2014, [Online]. Available: http://arxiv.org/abs/1412.3555
[12] M. S. Islam and E. Hossain, “Foreign exchange currency rate prediction using a GRU-LSTM hybrid network,” Soft Computing Letters, vol. 3, p. 100009, Dec. 2021, doi: 10.1016/j.socl.2020.100009. 57 Program Studi Ilmu Komputer (S2) FTI Universitas Nusa Mandiri
[13] A. Yahyadi, F. Latifah, P. Studi Informatika, and F. T. Informasi, “ANALISIS SENTIMEN TWITTER TERHADAP KEBIJAKAN PPKM DI TENGAH PANDEMI COVID-19 MENGGUNAKAN MODE LSTM,” 464 Journal of Information System, Applied, Management, Accounting and Research. Issue Period, vol. 6, no. 2, pp. 464–470, 2022, doi: 10.52362/jisamar.v6i2.791.
[14] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput, vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi: 10.1162/neco.1997.9.8.1735.
[15] D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,” PeerJ Comput Sci, vol. 7, pp. 1–24, 2021, doi: 10.7717/PEERJ-CS.623.
[16] T. O. Hodson, “Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not,” Jul. 19, 2022, Copernicus GmbH. doi: 10.5194/gmd-15-5481-2022.
[17] W. Y. Ayele, “Adapting CRISP-DM for Idea Mining A Data Mining Process for Generating Ideas using a Textual Dataset,” 2020. [Online]. Available: www.ijacsa.thesai.org
[18] D. Kong, Y. Zhou, Y. Liu, and L. Xue, “Using the data mining method to assess the innovation gap: A case of industrial robotics in a catching-up country,” Technol Forecast Soc Change, vol. 119, pp. 80–97, Jun. 2017, doi: 10.1016/j.techfore.2017.02.035.
[19] P. L. Seabe, C. R. B. Moutsinga, and E. Pindza, “Forecasting Cryptocurrency Prices Using LSTM, GRU, and Bi-Directional LSTM: A Deep Learning Approach,” Fractal and Fractional, vol. 7, no. 2, Feb. 2023, doi: 10.3390/fractalfract7020203.
[20] L. Ni, Y. Li, X. Wang, J. Zhang, J. Yu, and C. Qi, “Forecasting of Forex Time Series Data Based on Deep Learning,” in Procedia Computer Science, Elsevier B.V., 2019, pp. 647–652. doi: 10.1016/j.procs.2019.01.189.
[21] O. Kantar and Z. H. Kilimci, “Deep learning based hybrid gold index (XAU/USD) direction forecast model,” Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 38, no. 2, pp. 1117–1128, 2023, doi: 10.17341/gazimmfd.888456.
[22] D. Makala and Z. Li, “Prediction of gold price with ARIMA and SVM,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Feb. 2021. doi: 10.1088/1742-6596/1767/1/012022.
[23] A. O. Babatunde and U. H. Igboeli, “Gold Price Prediction Using Autoregressive Integrated Moving Average (ARIMA),” Techno-Science, vol. 3, no. 3, 2020, [Online]. Available: www.dergipark.gov.tr/sjmakeu 58 Program Studi Ilmu Komputer (S2) FTI Universitas Nusa Mandiri
[24] H. Haifa Zahrah, S. Sa’adah, and R. Rismala, “The Foreign Exchange Rate Prediction Using Long-Short Term Memory,” International Journal on Information and Communication Technology (IJoICT), vol. 6, no. 2, pp. 94– 105, Jan. 2021, doi: 10.21108/ijoict.2020.62.538.
[25] J. Wang, X. Wang, J. Li, and H. Wang, “A Prediction Model of CNN-TLSTM for USD/CNY Exchange Rate Prediction,” IEEE Access, vol. 9, pp. 73346– 73354, 2021, doi: 10.1109/ACCESS.2021.3080459.
[26] Q. Ma, “Comparison of ARIMA, ANN and LSTM for Stock Price Prediction,” in E3S Web of Conferences, EDP Sciences, Dec. 2020. doi: 10.1051/e3sconf/202021801026.
[27] S. Kulshreshtha and A. Vijayalakshmi, “An ARIMA-LSTM hybrid model for stock market prediction using live data,” Journal of Engineering Science and Technology Review, vol. 13, no. 4, pp. 117–123, 2020, doi: 10.25103/jestr.134.11.
[28] M. Vijh, D. Chandola, V. A. Tikkiwal, and A. Kumar, “Stock Closing Price Prediction using Machine Learning Techniques,” in Procedia Computer Science, Elsevier B.V., 2020, pp. 599–606. doi: 10.1016/j.procs.2020.03.326.
[29] M. J. Hamayel and A. Y. Owda, “A Novel Cryptocurrency Price Prediction Model Using GRU, LSTM and bi-LSTM Machine Learning Algorithms,” AI (Switzerland), vol. 2, no. 4, pp. 477–496, Dec. 2021, doi: 10.3390/ai2040030.
[30] A. Dutta, S. Kumar, and M. Basu, “A Gated Recurrent Unit Approach to Bitcoin Price Prediction,” Journal of Risk and Financial Management, vol. 13, no. 2, Feb. 2020, doi: 10.3390/jrfm13020023.
[31] Y. Gao, R. Wang, and E. Zhou, “Stock Prediction Based on Optimized LSTM and GRU Models,” Sci Program, vol. 2021, 2021, doi: 10.1155/2021/4055281.
[32] E. Fitri, “Analisis Perbandingan Metode Regresi Linier, Random Forest Regression dan Gradient Boosted Trees Regression Method untuk Prediksi Harga Rumah,” JOURNAL OF APPLIED COMPUTER SCIENCE AND TECHNOLOGY (JACOST), vol. 4, no. 1, pp. 2723–1453, 2023, doi: 10.52158/jacost.491.
[33] K. Prayogi, W. Gata, and D. P. Kussanti, “Prediksi Harga Saham Bank Central Asia Menggunakan Algoritma Deep Learning GRU”.
Detail Informasi
Tesis ini ditulis oleh :
- Nama : Rio Mahendra Denta Saputra
- NIM : 14220005
- Prodi : Ilmu Komputer
- Kampus : Margonda
- Tahun : 2024
- Periode : I
- Pembimbing : Dr. Windu Gata, M.Kom
- Asisten :
- Kode : 0006.S2.IK.TESIS.I.2024
- Diinput oleh : SGM
- Terakhir update : 16 Februari 2025
- Dilihat : 115 kali
TENTANG PERPUSTAKAAN

E-Library Perpustakaan Universitas Nusa Mandiri merupakan
platform digital yang menyedikan akses informasi di lingkungan kampus Universitas Nusa Mandiri seperti akses koleksi buku, jurnal, e-book dan sebagainya.
INFORMASI
Alamat : Jln. Jatiwaringin Raya No.02 RT08 RW 013 Kelurahan Cipinang Melayu Kecamatan Makassar Jakarta Timur
Email : perpustakaan@nusamandiri.ac.id
Jam Operasional
Senin - Jumat : 08.00 s/d 20.00 WIB
Isitirahat Siang : 12.00 s/d 13.00 WIB
Istirahat Sore : 18.00 s/d 19.00 WIB
Perpustakaan Universitas Nusa Mandiri @ 2020