Deteksi Dini Penyakit Diabetes di Indonesia Menggunakan Artificial Neural Network

  • Yasrizal
  • 14220014

ABSTRAK

Penyakit diabetes tergolong sangat lazim dan kerap ditemui, berpotensi mengurangi angka harapan hidup. Kondisi ini berdampak pada banyak individu dari beragam kelompok umur setiap tahunnya. Tingginya angka keterjadian penyakit ini meningkatkan pentingnya diagnosa di tahap awal. Diabetes juga dapat meningkatkan timbulnya risiko lain seperti gagal ginjal, stroke, penyakit kardiovaskular dan kerusakan pada organ-organ penting lainya. Deteksi dini potensi penyakit diabetes dapat mengurangi risiko untuk menjadi parah dan kronis. Dalam penelitian ini, berbagai pendekatan berbasis pembelajaran mesin (machine learning) disajikan untuk memprediksi keterjadian penyakit diabetes. Penelitian ini memanfaatkan data yang diperoleh dari RSUP Persahabatan. Tujuannya adalah untuk menghasilkan metode deteksi dini penyakit diabetes yang selaras dengan pola hidup dan ciri khas penduduk Indonesia, terutama masyarakat Jakarta. Berdasarkan hasil pengujian pada sampel pasien dengan metode statistik, menunjukan bahwa sistolik, usia, diastolik dan high density lipoprotein (HDL) sebagai faktor risiko paling signifikan yang berhubungan dengan diabetes. hasil eksperimen menunjukkan skor akurasi tertinggi sebesar 0,86 (86%) dicapai metode klasifikasi Artificial Neural Network.

Kata Kunci: deteksi dini, diabetes, ANN, machine learning

KATA KUNCI

machine learning,Deteksi Tipe Jaringan


DAFTAR PUSTAKA

[1] M. Maniruzzaman, M. J. Rahman, B. Ahammed, and M. M. Abedin, “Classification and prediction of diabetes disease using machine learning paradigm,”Health information science and systems, vol. 8, pp. 1–14, 2020.

[2] F. Z. Haddad and M. A. Benbouras, “Application of artificial neural networks models in diabetes mellitus classification,” Models Optimisation and Mathematical Analysis Journal, vol. 8, no. 1, pp. 14–21, 2020.

[3] P. Zimmet, K. G. Alberti, D. J. Magliano, and P. H. Bennett, “Diabetes mellitus statistics on prevalence and mortality: facts and fallacies,” Nature Reviews Endocrinology, vol. 12, no. 10, pp. 616–622, 2016.

[4] S. K. Wildah, S. Agustiani, M. R. S, W. Gata, and H. M. Nawawi, “Deteksi Penyakit alzheimer Menggunakan ALGORITMA naïve Bayes Dan Correlation Based Feature Selection,” Jurnal Informatika, vol. 7, no. 2, pp. 166–173, Sep. 2020

[5] M. Wahidin, A. M. Latelay, and M. Nitami, “Dana Alokasi Khusus Dan Capaian Standar Pelayanan minimal diabetes melitus di Indonesia,” Indonesian Journal of Nursing Health Science, vol. 8, no. 1, Mar. 2023.

[6] A. Dutta, T. Batabyal, M. Basu, and S. T. Acton, “An efficient convolutional neural network for coronary heart disease prediction,” Expert Systems with Applications, vol. 159, p. 113408, Nov. 2020.

[7] R. R. Achmad and M. Haris, “Hyperparameter tuning deep learning for Imbalanced Data,” TEPIAN, vol. 4, no. 2, Jun. 2023.

[8] Rajendra, Priyanka, and Shahram Latifi. "Prediction of diabetes using logistic regression and ensemble techniques." Computer Methods and Programs in Biomedicine Update 1 (2021): 100032.

[9] Hasan, Kazi Amit, and Md Al Mehedi Hasan. "Classification of parkinson's disease by analyzing multiple vocal features sets." 2020 IEEE Region 10 Symposium (TENSYMP). IEEE, 2020.

[10] K. A. Hasan and Md. A. Hasan, “Prediction of clinical risk factors of diabetes using multiple machine learning techniques resolving class imbalance,” 2020 23rd International Conference on Computer and Information Technology (ICCIT), Dec. 2020.

[11] M. Khalilia, S. Chakraborty, and M. Popescu, “Predicting disease risks from highly imbalanced data using random forest,” BMC medical informatics and decision making, vol. 11, pp. 1–13, 2011.

[12] X. Liu, C. Gao, and P. Li, “A comparative analysis of support vector machines and Extreme Learning Machines,” Neural Networks, vol. 33, pp. 58–66, Sep. 2012.

[13] A. Hapfelmeier and K. Ulm, “A new variable selection approach using random forests,” Computational Statistics & Data Analysis, vol. 60, pp. 50–69, Apr. 2013.

[14] A. Iyer, J. S, and R. Sumbaly, “Diagnosis of diabetes using classification mining techniques,” International Journal of Data Mining & Knowledge Management Process, vol. 5, no. 1, pp. 01–14, Jan. 2015.

[15] M. Li, X. Fu, and D. Li, “Diabetes prediction based on xgboost algorithm,” in IOP conference series: materials science and engineering, vol. 768, no. 7. IOP Publishing, 2020, p. 072093.

[16] E. Sabitha, “Artificial intelligence approaches in diabetic prediction,” in Handbook of Research on AI Methods and Applications in Computer Engineering. IGI Global, pp. 451–477, 2023.

[17] C. A. Ramezan, T. A. Warner, and A. E. Maxwell, “Evaluation of sampling and cross-validation tuning strategies for Regional-Scale Machine Learning Classification,” Remote Sensing, vol. 11, no. 2, p. 185, Jan. 2019.

[18] Priya, K. Lakshmi, et al. "A novel approach to predict diabetes by using Naive Bayes classifier." 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184). IEEE, 2020.

[19] R. Rachman, “Sistem Pakar Deteksi Penyakit refraksi mata dengan metode Teorema Bayes Berbasis web,” Jurnal Informatika, vol. 7, no. 1, pp. 68–76, Apr. 2020.

[20] K. Oliullah et al., “A stacked ensemble machine learning approach for the prediction of diabetes,” Journal of Diabetes & Metabolic Disorders, vol. 23, no. 1, pp. 603–617, Nov. 2023.

[21] T. Manimegalai, J. Manju, M. M. Rubiston, B. Vidhyashree, and R. T. Prabu, “Prediction of optimized stock market trends using hybrid approach based on KNN and bagging classifier (KNNB),” 2022 IEEE 11th International 50 Conference on Communication Systems and Network Technologies (CSNT), Apr. 2022.

[22] A. Smiley, D. King, J. Harezlak, P. Dinh, and A. Bidulescu, “The association between sleep duration and lipid profiles: The NHANES 2013–2014,” Journal of Diabetes & Metabolic Disorders, vol. 18, no. 2, pp. 315–322, Jun. 2019.

[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn: Machine learning in python,” the Journal of machine Learning research, vol. 12, pp. 2825–2830, 2011.

[24] M. Azhar and H. F. Pardede, “Klasifikasi Dialek Pengujar Bahasa inggris menggunakan random forest,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 2, p. 439, Apr. 2021.

[25] Claesen. M, Simm. J, Popovic. D, Moreau. Y, and De. Moor. B, “Easy hyperparameter search using optunity,” arXiv preprint arXiv:1412.1114, 2014.

[26] Z. Mustaffa, N. A. Zaidi, F. Ernawan, H. Elhadi, and M. M. Hakim, “Personality predictive analysis based on Artificial Neural Network,” 2022 6th International Conference on Informatics and Computational Sciences (ICICoS), Sep. 2022.

[27] B. Sugara and A. Subekti, “Penerapan support vector machine (SVM) pada small dataset untuk deteksi Dini Gangguan Autisme,” Jurnal Pilar Nusa Mandiri, vol. 15, no. 2, pp. 177–182, Sep. 2019.

Detail Informasi

Tesis ini ditulis oleh :

  • Nama : Yasrizal
  • NIM : 14220014
  • Prodi : Ilmu Komputer
  • Kampus : Margonda
  • Tahun : 2024
  • Periode : I
  • Pembimbing : Dr. Muhammad Haris, S.Kom, M.Eng
  • Asisten :
  • Kode : 0005.S2.IK.TESIS.I.2024
  • Diinput oleh : SGM
  • Terakhir update : 16 Februari 2025
  • Dilihat : 66 kali

TENTANG PERPUSTAKAAN


PERPUSTAKAAN UNIVERSITAS NUSA MANDIRI


E-Library Perpustakaan Universitas Nusa Mandiri merupakan platform digital yang menyedikan akses informasi di lingkungan kampus Universitas Nusa Mandiri seperti akses koleksi buku, jurnal, e-book dan sebagainya.


INFORMASI


Alamat : Jln. Jatiwaringin Raya No.02 RT08 RW 013 Kelurahan Cipinang Melayu Kecamatan Makassar Jakarta Timur

Email : perpustakaan@nusamandiri.ac.id

Jam Operasional
Senin - Jumat : 08.00 s/d 20.00 WIB
Isitirahat Siang : 12.00 s/d 13.00 WIB
Istirahat Sore : 18.00 s/d 19.00 WIB

Perpustakaan Universitas Nusa Mandiri @ 2020