Identifikasi Autism Spectrum Disorder Menggunakan Model Klasifikasi Machine Learning Berbasis Seleksi Fitur

  • ANTON NOVIANTO
  • 14210243

ABSTRAK

ABSTRAK

Nama               : Anton Novianto

NIM                  : 14210243

Program Studi : Ilmu Komputer

Fakultas           : Teknologi Informasi

Jenjang            : Strata Dua (S2)

Konsentrasi      : Data Mining

Judul      : Identifikasi Autism Spectrum Disorder Menggunakan Model Klasifikasi Machine Learning Berbasis Seleksi Fitur

Autism Spectrum Disorder (ASD) adalah salah satu gangguan neurologis perkembangan yang sering kali mempengaruhi kemampuan sosial, komunikasi, dan perilaku individu. Gangguan ini memiliki spektrum gejala yang bervariasi, mulai dari gejala ringan hingga yang lebih parah. Oleh karena itu, diagnosis dini dan akurat ASD sangat penting untuk memberikan intervensi yang sesuai dan membantu individu yang terkena ASD serta keluarga mereka. Pendekatan model klasifikasi machine learning berbasis seleksi fitur dapat menjadi solusi untuk mengatasi tantangan tersebut. Model ini dapat digunakan untuk memprediksi ASD dengan memanfaatkan fitur-fitur yang terkait. Klasifikasi SVM dengan F-Score dan spFSR memiliki hasil kinerja yang sama baiknya dengan hanya menggunakan sepuluh fitur dibandingkan dengan menggunakan seluruh fitur yang tersedia. Kinerja Kaggle memberikan hasil rata – rata kinerja akurasi 96% untuk F-Score dan 98% untuk spFSR, sedangakan UCI memberikan hasil rata – rata kinerja akurasi 97% untuk spFSR, artinya dataset Kaggle memiliki fitur yang lebih robust untuk kinerja spFSR. Penelitian yang dilakukan dengan hanya menggabungkan setengah fitur menunjukkan efisiensi yang dicapai dari metode penelitian tersebut.

KATA KUNCI

ASD,machine learning,Fitur Seleksi,SVM,F-Score


DAFTAR PUSTAKA

DAFTAR REFERENSI

[1] F. Ma, “Diagnostic and Statistical Manual of Mental Disorders-5 (DSM-5),” in Encyclopedia of Gerontology and Population Aging, D. Gu and M. E. Dupre, Eds. Cham: Springer International Publishing, 2021, pp. 1414–1425. doi: 10.1007/978-3-030-22009-9_419.

[2] C. Walsh, P. O’Connor, E. Walsh, and S. Lydon, “A Systematic Review of Interventions to Improve Healthcare Experiences and Access in Autism,” Rev. J. Autism Dev. Disord., vol. 10, no. 2, pp. 185–202, 2023, doi: 10.1007/s40489-021-00279-2.

[3] C. Correale et al., “The Impact of Health and Social Services on the Quality of Life in Families of Adults with Autism Spectrum Disorder (ASD): A Focus Group Study,” Brain Sci., vol. 12, no. 2, 2022, doi: 10.3390/brainsci12020177.

[4] J. Zeidan et al., “Global prevalence of autism: A systematic review update,” Autism Res., vol. 15, no. 5, pp. 778–790, 2022, doi: 10.1002/aur.2696.

[5] M. M. Rahman, O. L. Usman, R. C. Muniyandi, S. Sahran, S. Mohamed, and R. A. Razak, “A review of machine learning methods of feature selection and classification for autism spectrum disorder,” Brain Sciences, vol. 10, no. 12. MDPI AG, pp. 1–23, Dec. 01, 2020. doi: 10.3390/brainsci10120949.

[6] D. E. Greydanus, D. R. Patel, and D. C. Rowland, “3.18 - Autism Spectrum Disorder,” in Comprehensive Pharmacology, T. Kenakin, Ed. Oxford: Elsevier, 2022, pp. 396–434. doi: https://doi.org/10.1016/B978-0-12- 820472-6.00085-2.

[7] J. L. Díaz-Agea, N. Macías-Martínez, C. Leal-Costa, G. Girón-Poves, J. A. García-Méndez, and I. Jiménez-Ruiz, “What can be improved in learning to care for people with autism? A qualitative study based on clinical nursing simulation,” Nurse Educ. Pract., vol. 65, no. October, 2022, doi: 10.1016/j.nepr.2022.103488.

[8] H. Alkahtani, T. H. H. Aldhyani, and M. Y. Alzahrani, “Early Screening of Autism Spectrum Disorder Diagnoses of Children Using Artificial Intelligence,” J. Disabil. Res., vol. 2, no. 1, pp. 14–25, 2023, doi: 70 10.57197/jdr-2023-0004.

[9] N. Al Mudawi and A. Alazeb, “A Model for Predicting Cervical Cancer Using Machine Learning Algorithms,” Sensors, vol. 22, no. 11, 2022, doi: 10.3390/s22114132.

[10] J. Wu and C. Hicks, “Breast cancer type classification using machine learning,” J. Pers. Med., vol. 11, no. 2, pp. 1–12, 2021, doi: 10.3390/jpm11020061.

[11] Mila Desi Anasanti, Khairunisa Hilyati, and Annisa Novtariany, “The Exploring feature selection techniques on Classification Algorithms for Predicting Type 2 Diabetes at Early Stage,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 5, pp. 832–839, 2022, doi: 10.29207/resti.v6i5.4419.

[12] R. Srivastava, S. Kumar, and B. Kumar, “7 - Classification model of machine learning for medical data analysis,” T. Goswami and G. R. B. T.-S. M. in M. L. Sinha, Eds. Academic Press, 2023, pp. 111–132. doi: https://doi.org/10.1016/B978-0-323-91776-6.00017-8.

[13] P. Giudici, A. Gramegna, and E. Raffinetti, “Machine Learning Classification Model Comparison,” Socioecon. Plann. Sci., vol. 87, p. 101560, 2023, doi: https://doi.org/10.1016/j.seps.2023.101560.

[14] L. Li, A. Wang, Q. Fang, and M. E. Moosbrugger, “Physical Activity Interventions for Improving Cognitive Functions in Children With Autism Spectrum Disorder: Protocol for a Network Meta-Analysis of Randomized Controlled Trials,” JMIR Res. Protoc., vol. 12, 2023, doi: 10.2196/40383.

[15] R. I.-A. De Humanidades, “THE CONTRIBUTION OF PSYCHOMOTRICITY IN THE DEVELOPMENT OF AUTISTIC CHILDREN: A LITERATURE REVIEW Izabel Maria de Barros Diogenes José Gusmão Coutinho,” Rev. Ibero-Americana Humanidades, Ciências e Educ. São Paulo, vol. v.9, no. n.05, p. 230, 2023.

[16] K. Vakadkar, D. Purkayastha, and D. Krishnan, “Detection of Autism Spectrum Disorder in Children Using Machine Learning Techniques,” SN Comput. Sci., vol. 2, no. 5, pp. 1–9, 2021, doi: 10.1007/s42979-021-00776- 5. 71

[17] M. Masum, I. Nur, M. J. H. Faruk, M. Adnan, and ..., “A comparative study of machine learning-based autism spectrum disorder detection with feature importance analysis,” Compsac 2022 …, no. January, 2022, [Online]. Available: https://www.researchgate.net/profile/Md-Jobair-HossainFaruk/publication/359081817_A_Comparative_Study_of_Machine_Learni ngbased_Autism_Spectrum_Disorder_Detection_with_Feature_Importance_ Analysis/links/6280835c37329433d9b28ffd/A-Comparative-Study-ofMach

[18] D. D. Khudhur and S. D. Khudhur, “The classification of autism spectrum disorder by machine learning methods on multiple datasets for four age groups,” Meas. Sensors, vol. 27, no. May, p. 100774, 2023, doi: 10.1016/j.measen.2023.100774.

[19] P. Saini and B. Nagpal, “Analysis of missing data and comparing the accuracy of imputation methods using wheat crop data,” Multimed. Tools Appl., 2023, doi: 10.1007/s11042-023-17178-9.

[20] U. of C. Irvine, “Autism Screening Adult,” UCI Machine Learning Repository, 2017. https://archive.ics.uci.edu/dataset/426/autism+screening+adult (accessed Oct. 14, 2023).

[21] U. of C. Irvine, “Autistic Spectrum Disorder Screening Data for Children,” UCI Machine Learning Repository, 2017. https://archive.ics.uci.edu/dataset/419/autistic+spectrum+disorder+screenin g+data+for+children (accessed Oct. 14, 2023).

[22] U. of C. Irvine, “Autistic Spectrum Disorder Screening Data for Adolescent,” UCI Machine Learning Repository, 2017. https://archive.ics.uci.edu/dataset/420/autistic+spectrum+disorder+screenin g+data+for+adolescent (accessed Oct. 14, 2023).

[23] Dr Fadi Fayez Thabtah (fadifayez.com), “Autism screening data for toddlers,” Kaggle, 2018. https://www.kaggle.com/datasets/fabdelja/autismscreening-for-toddlers (accessed Oct. 14, 2023).

[24] R. Alibutud et al., “Structural Variations Contribute to the Genetic Etiology 72 of Autism Spectrum Disorder and Language Impairments,” Int. J. Mol. Sci., vol. 24, no. 17, pp. 1–20, 2023, doi: 10.3390/ijms241713248.

[25] L. Li, C. G. Prato, and Y. Wang, “Ranking contributors to traffic crashes on mountainous freeways from an incomplete dataset: A sequential approach of multivariate imputation by chained equations and random forest classifier,” Accid. Anal. Prev., vol. 146, no. August, p. 105744, 2020, doi: 10.1016/j.aap.2020.105744.

[26] Q.-H. Luu, M. F. Lau, S. P. H. Ng, and T. Y. Chen, “Testing multiple linear regression systems with metamorphic testing,” J. Syst. Softw., vol. 182, p. 111062, 2021, doi: https://doi.org/10.1016/j.jss.2021.111062.

[27] A. Hallam, D. Mukherjee, and R. Chassagne, “Multivariate imputation via chained equations for elastic well log imputation and prediction,” Appl. Comput. Geosci., vol. 14, no. April, 2022, doi: 10.1016/j.acags.2022.100083.

[28] I. Ismiguzel, “Imputing Missing Data with Simple and Advanced Techniques,” Towards Data Science, 2022. https://towardsdatascience.com/imputing-missing-data-with-simple-andadvanced-techniques-f5c7b157fb87 (accessed Oct. 15, 2023).

[29] D. J. Stekhoven and P. Bühlmann, “Nonparametric Missing Value Imputation using Random Forest,” Package, vol. 28, no. 1, pp. 112–118, 2022, doi: 10.1093/bioinformatics/btr597.

[30] A. R. Alsaber, J. Pan, and A. Al-Hurban, “Handling complex missing data using random forest approach for an air quality monitoring dataset: A case study of kuwait environmental data (2012 to 2018),” Int. J. Environ. Res. Public Health, vol. 18, no. 3, pp. 1–26, 2021, doi: 10.3390/ijerph18031333.

[31] Liam Morgan, “MissForest - missing data imputation using iterated random forests,” RPubs by RStudio, 2020. https://rpubs.com/lmorgan95/MissForest (accessed Oct. 17, 2023).

[32] V. Aksakalli, Z. D. Yenice, M. Malekipirbazari, and K. Kargar, “Feature selection using stochastic approximation with Barzilai and Borwein nonmonotone gains,” Comput. Oper. Res., vol. 132, no. April, p. 105334, 2021, doi: 10.1016/j.cor.2021.105334. 73

[33] Kartik Menon, “Feature Selection In Machine Learning: All You Need to Know,” Simplilearn - Online Certification Training Course Provider, 2023. https://www.simplilearn.com/tutorials/machine-learning-tutorial/featureselection-in-machine-learning (accessed Oct. 18, 2023).

[34] T. E. Mathew, “Breast Cancer Classification Using an Extreme Gradient Boosting Model with F-Score Feature Selection Technique,” J. Adv. Inf. Technol., vol. 14, no. 2, pp. 363–372, 2023, doi: 10.12720/jait.14.2.363-372.

[35] N. Kumar, M. V. S. S. Chandra, and S. Mohapatro, “f-Score Feature Selection-Based Support Vector Regression for Solar Power Forecasting,” Lect. Notes Electr. Eng., vol. 616, pp. 249–259, 2021, doi: 10.1007/978-981- 16-1978-6_22.

[36] H. Zhou, X. Wang, and R. Zhu, “Feature selection based on mutual information with correlation coefficient,” Appl. Intell., vol. 52, no. 5, pp. 5457–5474, 2022, doi: 10.1007/s10489-021-02524-x.

[37] W. Gao, L. Hu, and P. Zhang, “Feature redundancy term variation for mutual information-based feature selection,” Appl. Intell., vol. 50, no. 4, pp. 1272– 1288, 2020, doi: 10.1007/s10489-019-01597-z.

[38] D. V. Akman et al., “K-Best Feature Selection and Ranking Via Stochastic Approximation,” Expert Syst. Appl., vol. 213, no. September, 2023, doi: 10.1016/j.eswa.2022.118864.

[39] Stacey Ronaghan, “The Mathematics of Decision Trees, Random Forest and Feature Importance in Scikit-learn and Spark,” Towards Data Science, 2018. https://towardsdatascience.com/the-mathematics-of-decision-trees-randomforest-and-feature-importance-in-scikit-learn-and-spark-f2861df67e3 (accessed Oct. 19, 2023).

[40] B. Charbuty and A. Abdulazeez, “Classification Based on Decision Tree Algorithm for Machine Learning,” J. Appl. Sci. Technol. Trends, vol. 2, no. 01, pp. 20–28, 2021, doi: 10.38094/jastt20165.

[41] H. F. Zhou, J. W. Zhang, Y. Q. Zhou, X. J. Guo, and Y. M. Ma, “A feature selection algorithm of decision tree based on feature weight,” Expert Syst. Appl., vol. 164, no. February 2020, p. 113842, 2021, doi: 10.1016/j.eswa.2020.113842. 74

[42] M. Bansal, A. Goyal, and A. Choudhary, “A comparative analysis of KNearest Neighbor, Genetic, Support Vector Machine, Decision Tree, and Long Short Term Memory algorithms in machine learning,” Decis. Anal. J., vol. 3, no. November 2021, p. 100071, 2022, doi: 10.1016/j.dajour.2022.100071.

[43] P. Cunningham and S. J. Delany, “K-Nearest Neighbour Classifiers-A Tutorial,” ACM Comput. Surv., vol. 54, no. 6, 2021, doi: 10.1145/3459665.

[44] Haviluddin et al., “A Performance Comparison of Euclidean, Manhattan and Minkowski Distances in K-Means Clustering,” 2020 6th Int. Conf. Sci. Inf. Technol. Embrac. Ind. 4.0 Towar. Innov. Disaster Manag. ICSITech 2020, pp. 184–188, 2020, doi: 10.1109/ICSITech49800.2020.9392053.

[45] A. A. Thant and S. M. Aye, “Euclidean, Manhattan and Minkowski Distance Methods For Clustering Algorithms,” Int. J. Sci. Res. Sci. Eng. Technol., vol. 7, no. 3, pp. 553–559, 2020, doi: 10.32628/ijsrset2073118.

[46] JavaTpoint, “K-Nearest Neighbor(KNN) Algorithm for Machine Learning.” https://www.javatpoint.com/k-nearest-neighbor-algorithm-for-machinelearning

[47] X. Ma et al., “Predicting the utilization factor of blasthole in rock roadways by random forest,” Undergr. Sp., vol. 11, pp. 232–245, 2023, doi: 10.1016/j.undsp.2023.01.006.

[48] N. M. Abdulkareem and A. M. Abdulazeez, “Machine Learning Classification Based on Radom Forest Algorithm: A Review,” Int. J. Sci. Bus., vol. 5, no. 2, pp. 128–142, 2021, doi: 10.5281/zenodo.4471118.

[49] K. Pereira Teodoro da Silva, A. Kalbusch, and E. Henning, “Detection of unauthorized consumption in water supply systems: A case study using logistic regression,” Util. Policy, vol. 84, no. March, 2023, doi: 10.1016/j.jup.2023.101647.

[50] www.tutorialforbeginner.com, “Logistic Regression in Machine Learning,” www.tutorialforbeginner.com, 2022. https://tutorialforbeginner.com/logistic-regression-in-machine-learning (accessed Oct. 21, 2023).

[51] M. V. Anand, B. Kiranbala, S. R. Srividhya, K. C., M. Younus, and M. H. 75 Rahman, “Gaussian Naïve Bayes Algorithm: A Reliable Technique Involved in the Assortment of the Segregation in Cancer,” Mobile Information Systems, vol. 2022. 2022. doi: 10.1155/2022/2436946.

[52] K. D. Chaudhuri, “Building Naive Bayes Classifier from Scratch to Perform Sentiment Analysis,” Data Science Blogathon, 2023. https://www.analyticsvidhya.com/blog/2022/03/building-naive-bayesclassifier-from-scratch-to-perform-sentiment-analysis/ (accessed Oct. 22, 2023).

[53] S. Alam, S. K. Sonbhadra, S. Agarwal, and P. Nagabhushan, “One-class support vector classifiers: A survey,” Knowledge-Based Syst., vol. 196, p. 105754, 2020, doi: 10.1016/j.knosys.2020.105754.

[54] J. Gu and S. Lu, “An effective intrusion detection approach using SVM with naïve Bayes feature embedding,” Comput. Secur., vol. 103, p. 102158, 2021, doi: 10.1016/j.cose.2020.102158.

[55] P. In, The Support Vector Machine, vol. 23, no. March. 2020.

[56] AMPG International, “Big Data Professional: An Introduction to Big Data and Data Science for The Enterprise,” no. Version 1.6, pp. 13–14, 2021.

[57] A. S. Heinsfeld, A. R. Franco, R. C. Craddock, A. Buchweitz, and F. Meneguzzi, “Identification of autism spectrum disorder using deep learning and the ABIDE dataset,” NeuroImage Clin., vol. 17, no. November 2016, pp. 16–23, 2018, doi: 10.1016/j.nicl.2017.08.017.

[58] V. Ravindranath and S. Ra, “A machine learning based approach to classify Autism with optimum behaviour sets,” no. August, 2018, doi: 10.14419/ijet.v7i3.18.14907Published.

[59] I. S. Here, I. Wiratsin, and L. Narupiyakul, “Feature Selection Technique for Autism Spectrum Disorder Insert Subtitle Here,” pp. 53–56.

[60] C. Wang, Z. Xiao, and J. Wu, “Physica Medica Functional connectivitybased classi fi cation of autism and control using SVM-RFECV on rs-fMRI data,” Phys. Medica, vol. 65, no. August, pp. 99–105, 2019, doi: 10.1016/j.ejmp.2019.08.010.

[61] S. Raj and S. Masood, “Analysis and Detection of Autism Spectrum Disorder Using Machine Learning Techniques,” Procedia Comput. Sci., vol. 167, no. 76 2019, pp. 994–1004, 2020, doi: 10.1016/j.procs.2020.03.399.

[62] G. Chhabra, V. Vashisht, and J. Ranjan, “A Comparison of Multiple Imputation Methods for Data with Missing Values,” Indian J. Sci. Technol., vol. 10, no. 19, pp. 1–7, 2017, doi: 10.17485/ijst/2017/v10i19/110646.

[63] K. Hanabusa, M. Oi, N. Tsukidate, and Y. Yoshimura, “Association between maternal Autism Spectrum Quotient scores and the tendency to see pragmatic impairments as a problem,” PLoS One, vol. 13, no. 12, pp. 1–13, 2018, doi: 10.1371/journal.pone.0209412.

[64] O. Golan, M. Terner, S. Israel-Yaacov, C. Allison, and S. Baron-Cohen, “The Autism-Spectrum Quotient–Hebrew version: Psychometric properties of a full and a short form, adapted for DSM-5,” Autism, vol. 27, no. 3, pp. 796–807, 2023, doi: 10.1177/13623613221117020.

[65] A. A. Australia, “Autism signs in children,” autism awareness australia, 2024. https://www.autismawareness.com.au/understanding-autism/signschildren (accessed Jun. 01, 2024).

Detail Informasi

Tesis ini ditulis oleh :

  • Nama : ANTON NOVIANTO
  • NIM : 14210243
  • Prodi : Ilmu Komputer
  • Kampus : Margonda
  • Tahun : 2023
  • Periode : II
  • Pembimbing : Prof. Dr. Jufriadif Na'am
  • Asisten :
  • Kode : 0054.S2.IK.TESIS.II.2023
  • Diinput oleh : NZH
  • Terakhir update : 09 Juli 2024
  • Dilihat : 80 kali

TENTANG PERPUSTAKAAN


PERPUSTAKAAN UNIVERSITAS NUSA MANDIRI


E-Library Perpustakaan Universitas Nusa Mandiri merupakan platform digital yang menyedikan akses informasi di lingkungan kampus Universitas Nusa Mandiri seperti akses koleksi buku, jurnal, e-book dan sebagainya.


INFORMASI


Alamat : Jln. Jatiwaringin Raya No.02 RT08 RW 013 Kelurahan Cipinang Melayu Kecamatan Makassar Jakarta Timur

Email : perpustakaan@nusamandiri.ac.id

Jam Operasional
Senin - Jumat : 08.00 s/d 20.00 WIB
Isitirahat Siang : 12.00 s/d 13.00 WIB
Istirahat Sore : 18.00 s/d 19.00 WIB

Perpustakaan Universitas Nusa Mandiri @ 2020