Conditional Tabular Gan (CTGAN) Untuk Meningkatkan Akurasi Prediksi Kelangsungan Hidup Penderita Gagal Jantung

  • AHMAD MAULID RIDWAN
  • 14210252

ABSTRAK

ABSTRAK

Nama              : Ahmad Maulid Ridwan

NIM                 : 14210252

Program Studi : Ilmu Komputer

Fakultas           : Teknologi Informasi

Jenjang            : Strata Dua (S2)

Konsentrasi     : Data Mining

Judul          : “Conditional Tabular Gan (CTGAN) Untuk Meningkatkan Akurasi Prediksi Kelangsungan Hidup Penderita Gagal Jantung”

Penyakit jantung, sebagai penyebab utama kematian global, memerlukan diagnosis dini yang efektif. Penelitian ini menerapkan Conditional Tabular GAN (CTGAN) pada dataset "heart_failure_clinical_records_dataset.csv" dari UCI. Menggunakan delapan model machine learning, termasuk AdaBoost Classifier, Random Forest dan Gradient Boosting Classifier, CTGAN digunakan untuk oversampling pada kelas minoritas. Hasilnya menunjukkan akurasi unggul dari AdaBoost Classifier (93%), Random Forest (93%) dan Gradient Boosting Classifier (92%), dengan skor F1 yang seimbang. Penggunaan CTGAN berhasil meningkatkan keseimbangan kelas melalui data sintetis yang mendekati distribusi asli. Evaluasi menyeluruh terhadap model memberikan wawasan mendalam tentang kemampuan prediksi kelangsungan hidup penderita gagal jantung. Penelitian ini berpotensi memajukan sistem pendukung keputusan untuk prognosis yang lebih baik, mengintegrasikan teknologi CTGAN dan machine learning.

KATA KUNCI

Conditional Tabular GAN (CTGAN),Gradient Boosting,Penyakit jantung


DAFTAR PUSTAKA

DAFTAR PUSTAKA

[1] WHO, “The Top 10 Causes of Death,” The Top 10 Causes of Death, [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/thetop-10-%0Acauses-of-death

[2] C. D. Fryar, T.-C. Chen, and X. Li, “Prevalence of uncontrolled risk factors for cardiovascular disease: United States, 1999-2010.,” NCHS Data Brief, no. 103, pp. 1–8, Aug. 2012.

[3] L. A. Allen et al., “Decision making in advanced heart failure: a scientific statement from the American Heart Association.,” Circulation, vol. 125, no. 15, pp. 1928–1952, Apr. 2012, doi: 10.1161/CIR.0b013e31824f2173.

[4] F. Amato, A. López, E. M. Peña-Méndez, P. Va?hara, A. Hampl, and J. Havel, “Artificial neural networks in medical diagnosis,” J Appl Biomed, vol. 11, no. 2, pp. 47–58, 2013, doi: https://doi.org/10.2478/v10136-012-0031-x.

[5] X. Hu, Y. Lin, G. Qin, and L. Zhang, “Underlying Causes of Death among Adults in the United States, 2013-2017.,” Explor Res Hypothesis Med, vol. 5, no. 4, pp. 122–128, 2020, doi: 10.14218/ERHM.2020.00065.

[6] S. S. Virani et al., “Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association.,” Circulation, vol. 141, no. 9, pp. e139–e596, Mar. 2020, doi: 10.1161/CIR.0000000000000757.

[7] C. W. Tsao et al., “Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association.,” Circulation, vol. 147, no. 8, pp. e93–e621, Feb. 2023, doi: 10.1161/CIR.0000000000001123.

[8] Z. Arabasadi, R. Alizadehsani, M. Roshanzamir, H. Moosaei, and A. A. Yarifard, “Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm.,” Comput Methods Programs Biomed, vol. 141, pp. 19–26, Apr. 2017, doi: 10.1016/j.cmpb.2017.01.004.

[9] R. Das, I. Turkoglu, and A. Sengur, “Effective diagnosis of heart disease through neural networks ensembles,” Expert Syst Appl, vol. 36, no. 4, pp. 7675–7680, 2009, doi: https://doi.org/10.1016/j.eswa.2008.09.013.

[10] B. Chapman, A. D. DeVore, R. J. Mentz, and M. Metra, “Clinical profiles in acute heart failure: an urgent need for a new approach.,” ESC Heart Fail, vol. 6, no. 3, pp. 464–474, Jun. 2019, doi: 10.1002/ehf2.12439.

[11] S. Ansarullah and P. Kumar, “A systematic literature review on cardiovascular disorder identification using knowledge mining and machine learning methods,” International Journal of Recent Technology and Engineering, vol. 7, pp. 1009–1015, 2019.

[12] S. F. Weng, J. Reps, J. Kai, J. M. Garibaldi, and N. Qureshi, “Can Machinelearning improve cardiovascular risk prediction using routine clinical data?,” PLoS One, vol. 12, no. 4, Apr. 2017, doi: 10.1371/journal.pone.0174944. 44 “Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri”

[13] T. Ahmad, A. Munir, S. H. Bhatti, M. Aftab, and M. A. Raza, “Survival analysis of heart failure patients: A case study.,” PLoS One, vol. 12, no. 7, p. e0181001, 2017, doi: 10.1371/journal.pone.0181001.

[14] F. M. Zahid, S. Ramzan, S. Faisal, and I. Hussain, “Gender based survival prediction models for heart failure patients: A case study in Pakistan.,” PLoS One, vol. 14, no. 2, p. e0210602, 2019, doi: 10.1371/journal.pone.0210602.

[15] D. Chicco and G. Jurman, “Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone.,” BMC Med Inform Decis Mak, vol. 20, no. 1, p. 16, Feb. 2020, doi: 10.1186/s12911- 020-1023-5.

[16] R. H. G. Schwinger, “Pathophysiology of heart failure,” Cardiovascular Diagnosis and Therapy, vol. 11, no. 1. AME Publishing Company, Feb. 01, 2021. doi: 10.21037/CDT-20-302.

[17] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni, “Modeling Tabular data using Conditional GAN,” Jun. 2019, [Online]. Available: http://arxiv.org/abs/1907.00503

[18] 2019 International Conference on Intelligent Computing and Control Systems (ICCS). IEEE.

[19] E. E. Okoro, T. Obomanu, S. E. Sanni, D. I. Olatunji, and P. Igbinedion, “Application of artificial intelligence in predicting the dynamics of bottom hole pressure for under-balanced drilling: Extra tree compared with feed forward neural network model,” Petroleum, vol. 8, no. 2, pp. 227–236, Jun. 2022, doi: 10.1016/j.petlm.2021.03.001.

[20] K. Omari, “Phishing Detection using Gradient Boosting Classifier,” Procedia Comput Sci, vol. 230, pp. 120–127, 2023, doi: 10.1016/j.procs.2023.12.067.

[21] A. Ishaq et al., “Improving the Prediction of Heart Failure Patients’ Survival Using SMOTE and Effective Data Mining Techniques,” IEEE Access, vol. 9, pp. 39707–39716, 2021, doi: 10.1109/ACCESS.2021.3064084.

[22] D. Mpanya, T. Celik, E. Klug, and H. Ntsinjana, “Predicting mortality and hospitalization in heart failure using machine learning: A systematic literature review,” IJC Heart and Vasculature, vol. 34, Jun. 2021, doi: 10.1016/j.ijcha.2021.100773.

[23] A. Newaz, N. Ahmed, and F. Shahriyar Haq, “Survival prediction of heart failure patients using machine learning techniques,” Inform Med Unlocked, vol. 26, Jan. 2021, doi: 10.1016/j.imu.2021.100772.

[24] H. IEEE Engineering in Medicine and Biology Society. Annual International Conference (40th?: 2018?: Honolulu, IEEE Engineering in Medicine and Biology Society, and Institute of Electrical and Electronics Engineers, 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society?: Learning from the Past, Looking to the Future?: July 17- 21, 2018, Hawaii Convention Center, Honolulu, Hawaii. 45 “Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri”

[25] M. Gjoreski, A. Gradisek, B. Budna, M. Gams, and G. Poglajen, “Machine Learning and End-to-End Deep Learning for the Detection of Chronic Heart Failure from Heart Sounds,” IEEE Access, vol. 8, pp. 20313–20324, 2020, doi: 10.1109/ACCESS.2020.2968900.

[26] H. Agrawal, J. Chandiwala, S. Agrawal, and Y. Goyal, “Heart Failure Prediction using Machine Learning with Exploratory Data Analysis,” in 2021 International Conference on Intelligent Technologies, CONIT 2021, Institute of Electrical and Electronics Engineers Inc., Jun. 2021. doi: 10.1109/CONIT51480.2021.9498561.

[27] S. Rao et al., “An Explainable Transformer-Based Deep Learning Model for the Prediction of Incident Heart Failure,” IEEE J Biomed Health Inform, vol. 26, no. 7, pp. 3362–3372, Jul. 2022, doi: 10.1109/JBHI.2022.3148820.

[28] D. Chicco and L. Oneto, “An Enhanced Random Forests Approach to Predict Heart Failure from Small Imbalanced Gene Expression Data,” IEEE/ACM Trans Comput Biol Bioinform, vol. 18, no. 6, pp. 2759–2765, 2021, doi: 10.1109/TCBB.2020.3041527.

[29] 2019 IEEE 5th International Conference for Convergence in Technology (I2CT). IEEE.

[30] L. Zhao, C. Liu, S. Wei, C. Liu, and J. Li, “Enhancing Detection Accuracy for Clinical Heart Failure Utilizing Pulse Transit Time Variability and Machine Learning,” IEEE Access, vol. 7, pp. 17716–17724, 2019, doi: 10.1109/ACCESS.2019.2895230.

[31] D. Nunes et al., Risk Prediction of Heart Failure Decompensation Events in Multiparametric Feature Spaces. 2018. doi: 10.0/Linux-x86_64.

[32] 2019 IEEE 5th International Conference for Convergence in Technology (I2CT). IEEE.

Detail Informasi

Tesis ini ditulis oleh :

  • Nama : AHMAD MAULID RIDWAN
  • NIM : 14210252
  • Prodi : Ilmu Komputer
  • Kampus : Margonda
  • Tahun : 2023
  • Periode : II
  • Pembimbing : Dr. Agus Subekti, M.T.
  • Asisten :
  • Kode : 0049.S2.IK.TESIS.II.2023
  • Diinput oleh : NZH
  • Terakhir update : 09 Juli 2024
  • Dilihat : 108 kali

TENTANG PERPUSTAKAAN


PERPUSTAKAAN UNIVERSITAS NUSA MANDIRI


E-Library Perpustakaan Universitas Nusa Mandiri merupakan platform digital yang menyedikan akses informasi di lingkungan kampus Universitas Nusa Mandiri seperti akses koleksi buku, jurnal, e-book dan sebagainya.


INFORMASI


Alamat : Jln. Jatiwaringin Raya No.02 RT08 RW 013 Kelurahan Cipinang Melayu Kecamatan Makassar Jakarta Timur

Email : perpustakaan@nusamandiri.ac.id

Jam Operasional
Senin - Jumat : 08.00 s/d 20.00 WIB
Isitirahat Siang : 12.00 s/d 13.00 WIB
Istirahat Sore : 18.00 s/d 19.00 WIB

Perpustakaan Universitas Nusa Mandiri @ 2020