etode Identifikasi Nyamuk Aedes Melalui Audio Yang Tahan Terhadap Variasi Kanal Perekam Menggunakan Gammatone Filter Dan MLP

  • MARIYANTO
  • 14210250

ABSTRAK

ABSTRAK

Nama              : Mariyanto

NIM                 : 14210250

Program Studi : Ilmu Komputer

Fakultas           : Teknologi Informasi

Jenjang            : Strata Dua (S2)

Konsentrasi      : Data Mining

Judul Tesis     : “ Metode Identifikasi Nyamuk Aedes Melalui Audio Yang Tahan Terhadap Variasi Kanal Perekam Menggunakan Gammatone Filter Dan MLP” 

Perbedaan kondisi lingkungan dan penggunaan alat perekam yang beragam dapat menyebabkan variasi kanal audio yang signifikan. Model yang dibuat dengan Machine Learning biasanya kurang tahan terhadap variasi kanal audio. Penelitian ini bertujuan untuk meningkatkan ketahanan model dalam mengidentifikasi Aedes Aegypti dan Aedes Albopictus melalui analisis spektral audio. Pendekatan yang digunakan melibatkan teknik manipulasi audio seperti normalisasi, channel equalization, dan histogram equalization. Pemodelan dilakukan menggunakan berbagai arsitektur machine learning, termasuk Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), Gated CNN, Long Short-Term Memory (LSTM), dan Gated Recurrent Unit (GRU). Fitur-fitur ekstraksi melibatkan ShortTime Fourier Transform (STFT), Filter Bank (FBank), Mel-Frequency Cepstral Coefficients (MFCC), Gammatone Frequency Cepstral Coefficients (GFCC), dan Power Normalized Cepstral Coefficients (PNCC). Hasil pengujian menunjukkan bahwa kombinasi antara histogram equalization, MLP, dan GFCC menghasilkan kinerja optimal. Pada dataset Wingbeats, tingkat akurasi tertinggi mencapai 93,82%. Selain itu, model ini juga menunjukkan kinerja yang baik pada dataset Humbugdb dengan akurasi 83,08% dan pada dataset Dryad dengan akurasi 75,86%. Temuan ini memberikan kontribusi berharga dalam mengembangkan model yang tangguh dan dapat menjadi dasar yang solid dalam mendukung upaya pengawasan dan pengendalian penyakit yang disebabkan oleh nyamuk Aedes Aegypti dan Aedes Albopictus.

KATA KUNCI

Aedes Aegypti,GFCC,MLP,Histogram Equalization,ketahanan model


DAFTAR PUSTAKA

REFERENSI

[1] W. H. Organization, “Disease Outbreak News; Dengue in the Region of the.” Accessed: Sep. 12, 2023. [Online]. Available: https://www.who.int/emergencies/disease-outbreak-news/item/2023- DON475

[2] T. H. Supanji, “Pemerintah Soroti Penularan Penyakit Demam Berdarah Dengue,” Kemenko PMK. Accessed: Nov. 02, 2023. [Online]. Available: https://www.kemenkopmk.go.id/pemerintah-soroti-penularan-penyakitdemam-berdarah-dengue

[3] S. K. Roy and S. Bhattacharjee, “Dengue virus: epidemiology, biology, and disease aetiology,” Can. J. Microbiol., vol. 67, no. 10, pp. 687–702, 2021.

[4] W. H. Offenhauser Jr and M. C. Kahn, “The sounds of disease-carrying mosquitoes,” J. Acoust. Soc. Am., vol. 21, no. 3, pp. 259–263, 1949.

[5] D. R. Raman, R. R. Gerhardt, and J. B. Wilkerson, “Detecting insect flight sounds in the field: Implications for acoustical counting of mosquitoes,” Trans. ASABE, vol. 50, no. 4, pp. 1481–1485, 2007.

[6] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Campbell, “A survey of mobile phone sensing,” IEEE Commun. Mag., vol. 48, no. 9, pp. 140–150, 2010.

[7] B. Guo et al., “Mobile crowd sensing and computing: The review of an emerging human-powered sensing paradigm,” ACM Comput. Surv., vol. 48, no. 1, pp. 1–31, 2015.

[8] J. Du, Q. Wang, T. Gao, Y. Xu, L.-R. Dai, and C.-H. Lee, “Robust speech recognition with speech enhanced deep neural networks,” in Fifteenth annual conference of the international speech communication association, 2014.

[9] G. Vanderreydt and K. Demuynck, “A novel channel estimate for noise robust speech recognition,” Comput. Speech Lang., p. 101598, 2023, doi: 81 Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri https://doi.org/10.1016/j.csl.2023.101598.

[10] I. Kodrasi, S. Goetze, and S. Doclo, “Increasing the Robustness of Acoustic Multichannel Equalization by Means of Regularization,” in IWAENC 2012; International Workshop on Acoustic Signal Enhancement, 2012, pp. 1–4.

[11] A. De La Torre, A. M. Peinado, J. C. Segura, J. L. Pérez-Córdoba, M. C. Ben\’\itez, and A. J. Rubio, “Histogram equalization of speech representation for robust speech recognition,” IEEE Trans. Speech Audio Process., vol. 13, no. 3, pp. 355–366, 2005.

[12] J. B. Awotunde, S. O. Folorunso, R. G. Jimoh, E. A. Adeniyi, K. M. Abiodun, and G. J. Ajamu, “Application of artificial intelligence for COVID19 epidemic: an exploratory study, opportunities, challenges, and future prospects,” Artif. Intell. COVID-19, pp. 47–61, 2021.

[13] M. S. Fernandes, W. Cordeiro, and M. Recamonde-Mendoza, “Detecting Aedes Aegypti mosquitoes through audio classification with convolutional neural networks,” Comput. Biol. Med., vol. 129, p. 104152, 2021, doi: https://doi.org/10.1016/j.compbiomed.2020.104152.

[14] J.-G. Lee, Y. Roh, H. Song, and S. E. Whang, “Machine learning robustness, fairness, and their convergence,” in Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery \& Data Mining, 2021, pp. 4046–4047.

[15] G. Sharma, K. Umapathy, and S. Krishnan, “Trends in audio signal feature extraction methods,” Appl. Acoust., vol. 158, p. 107020, 2020, doi: https://doi.org/10.1016/j.apacoust.2019.107020.

[16] W. B. Snow, “Audible frequency ranges of music, speech and noise,” Bell Syst. Tech. J., vol. 10, no. 4, pp. 616–627, 1931, doi: 10.1002/j.1538- 7305.1931.tb02334.x.

[17] V. Mitra, H. Franco, M. Graciarena, and A. Mandal, “Normalized amplitude modulation features for large vocabulary noise-robust speech recognition,” in 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, pp. 4117–4120. 82 Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri

[18] V. Välimäki and J. D. Reiss, “All about audio equalization: Solutions and frontiers,” Appl. Sci., vol. 6, no. 5, p. 129, 2016.

[19] P. Ahrendt, A. Meng, and J. Larsen, “Decision time horizon for music genre classification using short time features,” in 2004 12th European Signal Processing Conference, 2004, pp. 1293–1296.

[20] E. Por, M. van Kooten, and V. Sarkovic, “Nyquist--Shannon sampling theorem,” Leiden Univ., vol. 1, no. 1, 2019.

[21] J. Allen, “Short term spectral analysis, synthesis, and modification by discrete Fourier transform,” IEEE Trans. Acoust., vol. 25, no. 3, pp. 235– 238, 1977.

[22] J. B. Allen and L. R. Rabiner, “A unified approach to short-time Fourier analysis and synthesis,” Proc. IEEE, vol. 65, no. 11, pp. 1558–1564, 1977.

[23] L. Cohen, Time-frequency analysis, vol. 778. Prentice hall New Jersey, 1995.

[24] S. Sarangi, M. Sahidullah, and G. Saha, “Optimization of data-driven filterbank for automatic speaker verification,” Digit. Signal Process., vol. 104, p. 102795, 2020, doi: https://doi.org/10.1016/j.dsp.2020.102795.

[25] S. Davis and P. Mermelstein, “Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences,” IEEE Trans. Acoust., vol. 28, no. 4, pp. 357–366, 1980.

[26] D. D. Greenwood, “A cochlear frequency-position function for several species—29 years later,” J. Acoust. Soc. Am., vol. 87, no. 6, pp. 2592–2605, 1990.

[27] M. Jeevan, A. Dhingra, M. Hanmandlu, and B. K. Panigrahi, “Robust speaker verification using GFCC based i-vectors,” in Proceedings of the International Conference on Signal, Networks, Computing, and Systems: ICSNCS 2016, Volume 1, 2017, pp. 85–91.

[28] C. Kim and R. M. Stern, “Power-normalized cepstral coefficients (PNCC) for robust speech recognition,” IEEE/ACM Trans. audio, speech, Lang. 83 Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri Process., vol. 24, no. 7, pp. 1315–1329, 2016.

[29] W.-C. Lin and C.-F. Tsai, “Missing value imputation: a review and analysis of the literature (2006--2017),” Artif. Intell. Rev., vol. 53, pp. 1487–1509, 2020.

[30] M. K. Dahouda and I. Joe, “A deep-learned embedding technique for categorical features encoding,” IEEE Access, vol. 9, pp. 114381–114391, 2021.

[31] S. Chachada and C.-C. J. Kuo, “Environmental sound recognition: A survey,” APSIPA Trans. Signal Inf. Process., vol. 3, p. e14, 2014.

[32] J. P. Bello, C. Mydlarz, and J. Salamon, “Sound analysis in smart cities,” Comput. Anal. sound scenes events, pp. 373–397, 2018.

[33] R. M. Alsina-Pagès, J. Navarro, F. Al\’\ias, and M. Hervás, “homesound: Real-time audio event detection based on high performance computing for behaviour and surveillance remote monitoring,” Sensors, vol. 17, no. 4, p. 854, 2017.

[34] D. Mitrovi?, M. Zeppelzauer, and C. Breiteneder, “Features for contentbased audio retrieval,” in Advances in computers, vol. 78, Elsevier, 2010, pp. 71–150.

[35] Z. Wu, X. Wang, and B. Jiang, “Fault diagnosis for wind turbines based on ReliefF and eXtreme gradient boosting,” Appl. Sci., vol. 10, no. 9, p. 3258, 2020.

[36] E. Tsalera, A. Papadakis, and M. Samarakou, “Novel principal component analysis-based feature selection mechanism for classroom sound classification,” Comput. Intell., vol. 37, no. 4, pp. 1827–1843, 2021.

[37] S. Haykin, Neural networks: a comprehensive foundation. Prentice Hall PTR, 1998.

[38] I. Sandoval-Palis, D. Naranjo, J. Vidal, and R. Gilar-Corbi, “Early dropout prediction model: A case study of university leveling course students,” 84 Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri Sustainability, vol. 12, no. 22, p. 9314, 2020.

[39] M. A. Ghorbani, H. A. Zadeh, M. Isazadeh, and O. Terzi, “A comparative study of artificial neural network (MLP, RBF) and support vector machine models for river flow prediction,” Environ. Earth Sci., vol. 75, pp. 1–14, 2016.

[40] J. Y. Chung and S. Lee, “Dropout early warning systems for high school students using machine learning,” Child. Youth Serv. Rev., vol. 96, pp. 346– 353, 2019.

[41] M. Kayri, “An intelligent approach to educational data: Performance comparison of the multilayer perceptron and the radial basis function artificial neural networks,” Educ. Sci. Theory \& Pract., vol. 15, no. 5, 2015.

[42] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, “Language Modeling with Gated Convolutional Networks.” 2017.

[43] F. Gers, “Long short-term memory in recurrent neural networks,” Verlag nicht ermittelbar, 2001.

[44] R. Dey and F. M. Salem, “Gate-variants of gated recurrent unit (GRU) neural networks,” in 2017 IEEE 60th international midwest symposium on circuits and systems (MWSCAS), 2017, pp. 1597–1600.

[45] J. Xu, Y. Zhang, and D. Miao, “Three-way confusion matrix for classification: A measure driven view,” Inf. Sci. (Ny)., vol. 507, pp. 772–794, 2020, doi: https://doi.org/10.1016/j.ins.2019.06.064.

[46] M. C. Kahn, W. Celestin, and W. Offenhauser, “Recording of sounds produced by certain disease-carrying mosquitoes,” Science (80-. )., vol. 101, no. 2622, pp. 335–336, 1945.

[47] Y. Chen, A. Why, G. Batista, A. Mafra-Neto, and E. Keogh, “Flying insect classification with inexpensive sensors,” J. Insect Behav., vol. 27, pp. 657– 677, 2014.

[48] Z. Li, Z. Zhou, Z. Shen, and Q. Yao, “Automated identification of mosquito 85 Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri (diptera: Culicidae) wingbeat waveform by artificial neural network,” in Artificial Intelligence Applications and Innovations: IFIP TC12 WG12. 5- Second IFIP Conference on Artificial Intelligence Applications and Innovations (AIAI2005), September 7--9, 2005, Beijing, China 2, 2005, pp. 483–489.

[49] A. Moore, “Artificial neural network trained to identify mosquitoes in flight,” J. Insect Behav., vol. 4, no. 3, pp. 391–396, 1991. [50] W. Rawat and Z. Wang, “Deep convolutional neural networks for image classification: A comprehensive review,” Neural Comput., vol. 29, no. 9, pp. 2352–2449, 2017.

[51] D. Motta et al., “Application of convolutional neural networks for classification of adult mosquitoes in the field,” PLoS One, vol. 14, no. 1, p. e0210829, 2019.

[52] B. J. Johnson and S. A. Ritchie, “The siren’s song: exploitation of female flight tones to passively capture male Aedes Aegypti (Diptera: Culicidae),” J. Med. Entomol., vol. 53, no. 1, pp. 245–248, 2016.

[53] F. Balestrino et al., “A sound trap for Aedes Albopictus (Skuse) male surveillance: response analysis to acoustic and visual stimuli,” Acta Trop., vol. 164, pp. 448–454, 2016.

[54] D. F. Silva, V. M. A. De Souza, G. E. Batista, E. Keogh, and D. P. W. Ellis, “Applying machine learning and audio analysis techniques to insect recognition in intelligent traps,” in 2013 12th International conference on machine learning and applications, 2013, pp. 99–104.

[55] L. J. Cator, B. J. Arthur, A. Ponlawat, and L. C. Harrington, “Behavioral observations and sound recordings of free-flight mating swarms of Ae. aegypti (Diptera: Culicidae) in Thailand,” J. Med. Entomol., vol. 48, no. 4, pp. 941–946, 2011.

[56] B. J. Arthur, K. S. Emr, R. A. Wyttenbach, and R. R. Hoy, “Mosquito (Aedes Aegypti) flight tones: Frequency, harmonicity, spherical spreading, and 86 Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri phase relationships,” J. Acoust. Soc. Am., vol. 135, no. 2, pp. 933–941, 2014.

[57] C. S. Wood et al., “Taking connected mobile-health diagnostics of infectious diseases to the field,” Nature, vol. 566, no. 7745, pp. 467–474, 2019.

[58] H. Mukundarajan, F. J. H. Hol, E. A. Castillo, C. Newby, and M. Prakash, “Using mobile phones as acoustic sensors for high-throughput mosquito surveillance,” Elife, vol. 6, p. e27854, 2017.

[59] I. Kiskin, D. Zilli, Y. Li, M. Sinka, K. Willis, and S. Roberts, “Bioacoustic detection with wavelet-conditioned convolutional neural networks,” Neural Comput. Appl., vol. 32, pp. 915–927, 2020.

[60] D. Vasconcelos, N. Nunes, M. Ribeiro, C. Prandi, and A. Rogers, “LOCOMOBIS: a low-cost acoustic-based sensing system to monitor and classify mosquitoes,” in 2019 16th IEEE Annual Consumer Communications \& Networking Conference (CCNC), 2019, pp. 1–6.

[61] K. M. Staunton, L. Usher, T. I. M. Prachar, S. A. Ritchie, N. Snoad, and B. J. Johnson, “A novel methodology for recording wing beat frequencies of untethered male and female Aedes Aegypti ,” J. Am. Mosq. Control Assoc., vol. 35, no. 3, pp. 169–177, 2019.

[62] A. Malek et al., “SuperKogito/spafe: v0.3.2.” Zenodo, Feb. 2023. doi: 10.5281/zenodo.7686438.

[63] B. McFee et al., “librosa: Audio and music signal analysis in python,” in Proceedings of the 14th python in science conference, 2015, pp. 18–25.

[64] J. Lyons et al., “jameslyons/python\_speech\_features: release v0.6.1.” Zenodo, Jan. 2020. doi: 10.5281/zenodo.3607820.

Detail Informasi

Tesis ini ditulis oleh :

  • Nama : MARIYANTO
  • NIM : 14210250
  • Prodi : Ilmu Komputer
  • Kampus : Margonda
  • Tahun : 2023
  • Periode : II
  • Pembimbing : Prof. Dr. Hilman Ferdinandus Pardede, S.T., M.Eng
  • Asisten :
  • Kode : 0047.S2.IK.TESIS.II.2023
  • Diinput oleh : NZH
  • Terakhir update : 09 Juli 2024
  • Dilihat : 82 kali

TENTANG PERPUSTAKAAN


PERPUSTAKAAN UNIVERSITAS NUSA MANDIRI


E-Library Perpustakaan Universitas Nusa Mandiri merupakan platform digital yang menyedikan akses informasi di lingkungan kampus Universitas Nusa Mandiri seperti akses koleksi buku, jurnal, e-book dan sebagainya.


INFORMASI


Alamat : Jln. Jatiwaringin Raya No.02 RT08 RW 013 Kelurahan Cipinang Melayu Kecamatan Makassar Jakarta Timur

Email : perpustakaan@nusamandiri.ac.id

Jam Operasional
Senin - Jumat : 08.00 s/d 20.00 WIB
Isitirahat Siang : 12.00 s/d 13.00 WIB
Istirahat Sore : 18.00 s/d 19.00 WIB

Perpustakaan Universitas Nusa Mandiri @ 2020