Attentive Convolutional Neural Network Untuk Analisis Sentimen Terhadap ChatGPT
- DEDI IRAWAN
- 14207097
ABSTRAK
ABSTRAK
Nama : Dedi Irawan
NIM : 14207097
Program Studi : Ilmu Komputer
Fakultas : Teknologi Informasi
Jenjang : Strata Dua (S2)
Konsentrasi : Data Mining
Judul : Attentive Convolutional Neural Network Untuk Analisis Sentimen Terhadap ChatGPT
Analisis sentimen adalah salah satu teknik yang mampu untuk menganalisis sebuah ulasan, sentimen, prilaku dan emosi orang terhadap entitas seperti layanan, produk, organisasi, peristiwa dan media sosial. Perkembangan Artificial Intelligence (AI) yang saat ini banyak membantu menusia dalam menyelesaikan suatu masalah. Dan salah satu terobosan yang banyak mengejutkan masyarakat adalah hadirnya sebuah inovasi teknologi pada bulan november tahun 2022 yang bernama Chat Generative Pre Trained Transformer (ChatGPT). Maka dari itu, analisis sentimen pengguna ChatGPT menjadi berharga, agar mengetahui seberapa pengaruhnya teknologi ChatGPT dalam kehidupan bermasyarakat. Penelitian ini menerapkan model Attention yang digunakan untuk menangkap kata-kata penting sehingga model tersebut dapat memahami konteks yang relevan. Penelitian ini juga mengimplementasikan model Attentive menggunakan 3 jenis attention yaitu Attention network, Multi-head Attention dan Convolutional Block Attention Module (CBAM). Perpaduan model Attentive dan CNN mampu meningkatkan nilai akurasi, salah satu caranya adalah dengan hyperparameter tuning setting nya. Dari hasil pemilihan hyperparameter terbaik tersebut membuktikan bahwa model Attentive mechnism mampu menaikan performansi dari model baseline nya, masing-masing nilai akurasinya yang naik adalah Attention network (AN) 0.37%, Multi-head Attention (MA) 0.43%, dan CBAM 0.21%. nilai peningkatan yang tertinggi didapatkan oleh Multi-head Attention.
KATA KUNCI
Analisis Sentimen,Deep Learning,CNN,Attentive Deep Convolutional Neural Network
DAFTAR PUSTAKA
DAFTAR REFERENSI
[1] M. Dowling dan B. Lucey, "ChatGPT for (Finance) research: The Bananarama Conjecture," Financ. Res. Lett., vol. 53, 2024, doi: 10.1016/j.fl.2024.103662.
[2] M. Skjuve, A. Følstad, K. L. Fostervold, dan P. B. Brandtzaeg, "My Chatbot Companion - a Study of Human-Chatbot Relationships," Int. J. Hum. Comput. Stud., vol. 149, 2021, doi: 10.1016/j.ijhcs.2021.102601.
[3] H. Hidayatullah, Purwantoro, dan Y. Umaidah, "Penerapan Naïve Bayes Dengan Optimasi Information Gain Dan Smote Untuk Analisis Sentimen Pengguna Aplikasi Chatgpt," J. Mhs. Tek. Inform., vol. 7, 2024. [Daring]. Tersedia pada: https://ejournal.itn.ac.id/index.php/j%0Aati/article/view/6887%0Ahttps://ej 0%0Aurnal.itn.ac.id/index.php/jati/article/%0Adownload/6887/4111%0D
[4] J. Rudolph, S. Tan, dan S. Tan, "ChatGPT: Bullshit spewer or the end of traditional assessments in higher education?," J. Appl. Learn. Teach., vol. 6, no. 1, 2024, doi: 10.37074/jalt.2024.6.1.9.
[5] B. D. Lund dan T. Wang, "Chatting about ChatGPT: how may Al and GPT impact academia and libraries?," Library Hi Tech News, vol. 40, no. 3. 2024. doi: 10.1108/LHTN-01-2024-0009.
[6] B. Liu. "Sentiment analysis and opinion mining," Synth. Lect. Hum. Lang. Technol., 1, 2012. doi: no. 5 vol. 10.2200/S00416ED1V01Y201204HLT016.
[7] G. D'Aniello, M. Gaeta, dan I. La Rocca, "KnowMIS-ABSA: an overview and a reference model for applications of sentiment analysis and aspect- based sentiment analysis," Artif. Intell. Rev., vol. 55, no. 7, 2022, doi: 10.1007/s10462-021-10134-9.
[8] A. Ligthart. C. Catal, dan B. Tekinerdogan, "Systematic reviews in sentiment analysis: a tertiary study," Artif. Intell. Rev., vol. 54, no. 7, 2021. doi: 10.1007/s10462-021-09973-3.
[9] M. Aljebreen, B. Alabduallah, M. M. Asiri, A. S. Salama, M. Assiri, dan S. S. Ibrahim, "Moth Flame Optimization With Hybrid Deep Learning Based Sentiment Classification Toward ChatGPT on Twitter," IEEE Access, vol. 11, 2024, doi: 10.1109/ACCESS.2024.3315609.
[10] R. Ni dan H. Cao, "Sentiment Analysis based on Glove and LSTM-GRU," in Chinese Control Conference, CCC, 2020, vol. 2020-July. doi: 10.23919/CCC50068.2020.9188578.
[11] S. Kardakis, 1. Perikos. F. Grivokostopoulou, dan I. Hatzilygeroudis, "Examining attention mechanisms in deep learning models for sentiment analysis," Appl. Sci., vol. 11, no. 9, 2021, doi: 10.3390/app11093883.
[12] Y. Feng dan Y. Cheng, "Short Text Sentiment Analysis Based on Multi- Channel CNN with Multi-Head Attention Mechanism," IEEE Access, vol. 9, 2021, doi: 10.1109/ACCESS.2021.3054521.
[13] J. C. Ruyun Chen, Di Yu, "Classification of Microblog Users' Sentiments Based on BERT-BILSTM-CBAM," CONVERTER, 2021, doi: 10.17762/converter.128.
[14] L. Chen, P. Chen, dan Z. Lin, "Artificial Intelligence in Education: A Review," IEEE Access, vol. 8, hal. 75264-75278, 2020, doi: 10.1109/ACCESS.2020.2988510.
[15] J. Guo, "Research on Artificial Intelligence: Deep Learning to Identify Plant Species," IEEE Int. Conf. Mach. Learn. Knowl. Eng., 2022.
[16] S. Ray. "A Quick Review of Machine Learning Algorithms." 2019 Int. Conf. Mach. Learn. Big Data, Cloud Parallel Comput., hal. 35-39, 2019.
[17] Q. Bi, K. E. Goodman, J. Kaminsky, dan J. Lessler, "What is machine learning? A primer for the epidemiologist," Am. J. Epidemiol., vol. 188, no. 12, hal. 2222-2239, 2019, doi: 10.1093/aje/kwz189.
[18] B. Ghasemkhani, O. Aktas, dan D. Birant, "Balanced K-Star: An Explainable Machine Learning Method for Internet-of-Things-Enabled Predictive Maintenance in Manufacturing," Machines, vol. 11, no. 3, 2024, doi: 10.3390/machines11030322.
[19] Migunani dan Kevin Aditama, "PEMANFAATAN NATURAL LANGUAGE PROCESSING DAN PATTERN MATCHING DALAM PEMBELAJARAN MELALUI GURU VIRTUAL." Elkom J. Elektron dan Komput., vol. 13, no. 1, 2020, doi: 10.51903/elkom.v1311.187.
[20] A. Thoomkuzhy, "Drug reviews: cross-condition and cross-source analysis by review quantification using regional CNN-LSTM models.," Masters Diss., 2020. [Daring]. Tersedia pada: 10.21427/fcve-2g86
[21] U. Rofiqoh, R. S. Perdana, dan M. A. Fauzi, "Analisis Sentimen Tingkat Kepuasan Pengguna Penyedia Layanan Telekomunikasi Seluler Indonesia Pada Twitter Dengan Metode Support Vector Machine dan Lexion Based Feature," J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 1, no. 12, 2017.
[22] C. Singh, "Attention mechanism in Deep Learning. Explained," KDnuggets, 2021.
[23] D. Bahdanau, K. H. Cho, dan Y. Bengio, "Neural machine translation by jointly learning to align and translate," 2015.
[24] M. T. Luong, H. Pham, dan C. D. Manning. "Effective approaches to attention-based neural machine translation," 2015. doi: 10.18653/v1/d15-
1166.
[25] R. K. Yadav, L. Jiao, M. Goodwin, dan O. C. Granmo, "Positionless aspect based sentiment analysis using attention mechanism[Formula presented]," Knowledge-Based Syst., vol. 226, doi:
10.1016/j.knosys.2021.107136.
2021,
[26] A. Vaswani et al., "Attention is all you need," in Advances in Neural Information Processing Systems, 2017, vol. 2017-December.
[27] S. Woo, J. Park, J. Y. Lee, dan I. S. Kweon, "CBAM: Convolutional block attention module," in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, vol. 11211 LNCS. doi: 10.1007/978-3-030-01234- 2_1.
[28] D. Tri Hermanto, A. Setyanto, dan E. T. Luthfi, "Algoritma LSTM-CNN untuk Sentimen Klasifikasi dengan Word2vec pada Media Online LSTM- CNN Algorithm for Sentiment Clasification with Word2vec On Online Media," Creat. Inf. Technol. J. (CITEC JOURNAL), vol. 8, no. 1, 2021.
[29] B. D. Pratama. "Implementasi Model Long-Short Term Memory (LSTM) pada Klasifikasi Teks Data SMS Spam Berbahasa Indonesia." J. Mach. Learn. Comput. Intell., vol. 2, no. 2, 2022.
[30] K. Akbar dan M. Hayaty, "Data Balancing untuk Mengatasi Imbalance Dataset pada Prediksi Produksi Padi," J. Ilm. Intech Inf. Technol. J. UMUS, vol. 2, no. 02, 2020, doi: 10.46772/intech.v2i02.283.
[31] J. Pennington, R. Socher, dan C. D. Manning, "GloVe: Global vectors for word representation," 2014. doi: 10.3115/v1/d14-1162.
[32] W. S. Eka Putra, "Klasifikasi Citra Menggunakan Convolutional Neural Network (CNN) pada Caltech 101," J. Tek. ITS, vol. 5, no. 1, 2016, doi: 10.12962/j23373539.v5i1.15696.
[33] S. Ghosh, A. Dasgupta, dan A. Swetapadma, "A study on support vector machine based linear and non-linear pattern classification," 2019. doi: 10.1109/ISS1.2019.8908018.
[34] S. Albawi, T. A. Mohammed, dan S. Al-Zawi, "Understanding of a convolutional neural network," in Proceedings of 2017 International Conference on Engineering and Technology, ICET 2017, 2017, vol. 2018- January. doi: 10.1109/ICEngTechnol.2017.8308186.
[35] Suyanto, Machine Learning: Tingkat Dasar dan Lanjut. Bandung: Penerbit Informatika, 2018.
[36] M. Grandini, E. Bagli, dan G. Visani, "Metrics for Multi-Class Classification: an Overview," vol. 1-17, 2020, doi: https://doi.org/10.48550/arXiv.2008.05756.
[37] M. Rhanoui, M. Mikram, S. Yousfi, dan S. Barzali, "A CNN-BILSTM Model for Document-Level Sentiment Analysis," Mach. Learn. Knowl. Extr., vol. 1, no. 3, 2019, doi: 10.3390/make1030048.
[38] F. Long, K. Zhou, dan W. Ou, "Sentiment analysis of text based on bidirectional LSTM with multi-head attention," IEEE Access, vol. 7, 2019, doi: 10.1109/ACCESS.2019.2942614.
[39] H. Wang, X. Li, Z. Ren, D. Yang, dan C. Ma, "Exploring Multimodal Sentiment Analysis via CBAM Attention and Double-layer BILSTM Architecture," Tersedia 2024, [Daring]. pdf pada: https://arxiv.org/pdf/2303.14708.
Detail Informasi
Tesis ini ditulis oleh :
- Nama : DEDI IRAWAN
- NIM : 14207097
- Prodi : Ilmu Komputer
- Kampus : Margonda
- Tahun : 2023
- Periode : II
- Pembimbing : Prof. Dr. Hilman Ferdinandus Pardede, S.T., M.Eng
- Asisten :
- Kode : 0046.S2.IK.TESIS.II.2023
- Diinput oleh : NZH
- Terakhir update : 09 Juli 2024
- Dilihat : 136 kali
TENTANG PERPUSTAKAAN

E-Library Perpustakaan Universitas Nusa Mandiri merupakan
platform digital yang menyedikan akses informasi di lingkungan kampus Universitas Nusa Mandiri seperti akses koleksi buku, jurnal, e-book dan sebagainya.
INFORMASI
Alamat : Jln. Jatiwaringin Raya No.02 RT08 RW 013 Kelurahan Cipinang Melayu Kecamatan Makassar Jakarta Timur
Email : perpustakaan@nusamandiri.ac.id
Jam Operasional
Senin - Jumat : 08.00 s/d 20.00 WIB
Isitirahat Siang : 12.00 s/d 13.00 WIB
Istirahat Sore : 18.00 s/d 19.00 WIB
Perpustakaan Universitas Nusa Mandiri @ 2020