Prediksi Hepatitis C dengan Autoencoder-Based Feature Learning
- YUTRI AMELIA
- 14210237
ABSTRAK
ABSTRAK
Nama : Yutri Amelia
NIM : 14210237
Program Studi : Ilmu Komputer
Fakultas : Teknologi Informasi
Jenjang : Strata Dua (S2)
Konsentrasi : Data Mining
Judul : Prediksi Hepatitis C dengan Autoencoder-Based Feature Learning
Hepatitis C merupakan salah satu penyakit yang diakibatkan oleh virus yang menyebabkan tingkat kematian yang lebih besar di seluruh dunia dari penyakit kronis lain yang diderita secara global. Deteksi dini infeksi Hepatitis C sangat penting untuk mencegah penyakit kronis berkembang ke tahap yang lebih serius. Penggabungan beberapa metode machine learning dapat meningkatkan akurasi dalam memprediksi penyakit. Penelitian ini bertujuan untuk mendeteksi dini penyakit Hepatitis C dengan menggunakan autoencoder dan pengklasifikasian menggunakan metode machine learning diantaranya Logistic Regression, Support Vector Machine, K-nearest Neighbours, Random Forest, Decision Tree, Extreme Gradient Boosting, Artifical Neural Network dan Light Gradient Boosting Machine. Sebagai feature learning autoencoder memberikan akurasi lebih baik dari algoritma machine learning tanpa menggunakan autoencoder. Hasilnya, algoritma ANN yang menggunakan autoencoder mengalami kenaikan accuracy tertinggi yaitu sebesar 97%.
KATA KUNCI
Hepatitis C,Autoencoder,machine learning,Deep Learning,Feature learning
DAFTAR PUSTAKA
DAFTAR REFERENSI
[1] U. K. Lilhore et al., “Hybrid model for precise hepatitis-C classification using improved random forest and SVM method,” Sci. Rep., vol. 13, no. 1, pp. 1– 18, 2023, doi: 10.1038/s41598-023-36605-3.
[2] M. B. Butt, M. Alfayad, S. Saqib, M. A. Khan, M. Ahmad, M. A. Khan, and N. S. Elmitwally, “Diagnosing the stage of Hepatitis C using machine learning,” Journal of Healthcare Engineering, vol. 2021, p. 8062410, 2021, https://downloads.hindawi.com/journals/jhe/2021/8062410.pdf. [Online]Available: https://app.dimensions.ai/details/publication/pub.1143791480
[3] S. Kumari, D. Kumar, and M. Mittal, “An ensemble approach for classification and prediction of diabetes mellitus using soft voting classifier,” Int. J. Cogn. Comput. Eng., vol. 2, no. January, pp. 40–46, 2021, doi: 10.1016/j.ijcce.2021.01.001.
[4] P. Mahajan, S. Uddin, F. Hajati, and M. A. Moni, “Ensemble Learning for Disease Prediction: A Review,” Healthc., vol. 11, no. 12, 2023, doi: 10.3390/healthcare11121808.
[5] O. Obe, O. Owolafe, E. Charles Igodan, and A. Favour-Bethy Thompson, “Erythemato-Squamous Disease Prediction using Ensemble Multi-Feature Selection Approach Erythemato Squamous Disease Prediction using Ensemble Multi-Feature Selection Approach,” Artic. Int. J. Comput. Sci. Inf. Secur., no. June, 2022, [Online]. Available: https://sites.google.com/site/ijcsis/
[6] A. Alizargar, Y. L. Chang, and T. H. Tan, “Performance Comparison of Machine learning Approaches on Hepatitis C Prediction Employing Data Mining Techniques,” Bioengineering, vol. 10, no. 4, 2023, doi: 10.3390/bioengineering10040481.
[7] HCV Data Data Set. UCI Machine learning Repository. 2020. Available online: https://archive.ics.uci.edu/ml/datasets/HCV+ data (accessed on 1 January 2024). “Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri” 52
[8] L. Ma, Y. Yang, X. Ge, Y. Wan, and X. Sang, “Prediction of disease progression of chronic Hepatitis C based on XGBoost algorithm,” Proc. - 2020 Int. Conf. Robot. Intell. Syst. ICRIS 2020, pp. 598–601, 2020, doi: 10.1109/ICRIS52159.2020.00151.
[9] S. Ebiaredoh-Mienye, E. Esenogho, and T. Swart, “Artificial neural network technique for improving prediction of credit card default: A stacked sparse autoencoder approach,” International Journal of Electrical and Computer Engineering, vol. 11, pp. 4392–4402, 10 2021.
[10] H. Nugroho, “Fully convolutional variational autoencoder for feature extraction of fire detection system,” Jurnal Ilmu Komputer dan Informasi, vol. 13, 03 2020.
[11] M. Liang, W. Liu, S. Li, Z. Xiao, X. Liu, and F. Lu, “An unsupervised learning method with convolutional auto-encoder for vessel trajectory similarity computation,” Ocean Engineering, vol. 225, p. 108803, 04 2021.
[12] A. P. Giovani, H. F. Pardede, and A. Subekti, “Autoencoder-Based Feature learning for Predicting Cardiovascular Disease,” Int. J. Comput. Digit. Syst., vol. 14, no. 1, pp. 759–768, 2023, doi: 10.12785/ijcds/140158.
[13] O. Deperlioglu, U. Kose, D. Gupta, A. Khanna, and A. K. Sangaiah, “Diagnosis of heart diseases by a secure Internet of Health Things system based on Autoencoder Deep Neural Network,” Comput. Commun., vol. 162, no. April, pp. 31–50, 2020, doi: 10.1016/j.comcom.2020.08.011.
[14] S. C. Nandipati, C. XinYing, and K. K. Wah, “Hepatitis C virus (hcv) prediction by machine learning techniques,” Applications of Modelling and Simulation, vol. 4, pp. 89–100, 2020.
[15] S. GÜNDO?DU, “Hepatitis C Disease Detection Based on PCA–SVM Model,” Hittite J. Sci. Eng., vol. 9, no. 2, pp. 111–116, 2022, doi: 10.17350/hjse19030000261. “Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri” 53
[16] M. O. Edeh, S. Dalal, I. B. Dhaou, C. C. Agubosim, C. C. Umoke, N. E. Richard-Nnabu, and N. Dahiya, “Artificial intelligence- based ensemble learning model for prediction of Hepatitis C disease,” Frontiers in Public Health, vol. 10, 2022. [Online]. Available: https: //www.frontiersin.org/articles/10.3389/fpubh.2022.892371
[17] V. Harabor, R. Mogos, A. Nechita, A.-M. Adam, G. Adam, A.-S. MelintePopescu, M. Melinte-Popescu, M. Stuparu-Cretu, I.-A. Vasilache, E. Mihalcea- nu et al., “Machine learning approaches for the prediction of hepatitis b and c seropositivity,” International Journal of Environmental Research and Public Health, vol. 20, no. 3, p. 2380, 2023.
[18] A. M. Ali, M. R. Hassan, F. Aburub, M. Alauthman, A. Aldweesh, A. AlQerem, I. Jebreen, and A. Nabot, “Explainable machine learning approach for Hepatitis C diagnosis using sfs feature selection,” Machines, vol. 11, no. 3, 2023. [Online]. Available: https://www.mdpi.com/2075-1702/11/3/391
[19] S. Mohamed, M. Ezz, S. Hashem, W. Elakel, R. Salama, H. Elmakhzangy, and M. Elhefnawi, “Performance of machine learning approaches on prediction of esophageal varices for egyptian chronic Hepatitis C patients,” Informatics in Medicine Unlocked, vol. 17, p. 100267, 11 2019.
[20] H. Mamdouh Farghaly, M. Y. Shams, and T. Abd El-Hafeez, “Hepatitis C Virus prediction based on machine learning framework: a real-world case study in Egypt,” Knowl. Inf. Syst., vol. 65, no. 6, pp. 2595–2617, 2023, doi: 10.1007/s10115- 023-01851-4.
[21] L. Syafa’ah, Z. Zulfatman, I. Pakaya, and M. Lestandy, “Comparison of machi- ne learning classification methods in Hepatitis C virus,” Jurnal Online Informa- tika, vol. 6, no. 1, pp. 73–78, 2021.
[22] R. Safdari, A. Deghatipour, M. Gholamzadeh, and K. Maghooli, “Applying data mining techniques to classify patients with suspected Hepatitis C virus infection,” Intell. Med., vol. 2, no. 4, pp. 193–198, 2022, doi: 10.1016/j.imed.2021.12.003. “Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri” 54
[23] A. Alotaibi et al., “Explainable Ensemble-Based Machine learning Models for Detecting the Presence of Cirrhosis in Hepatitis C Patients,” Computation, vol. 11, no. 6, 2023, doi: 10.3390/computation11060104.
[24] A. Utku, “Deep learning Based Cirrhosis Detection,” Oper. Res. Eng. Sci. Theory Appl., vol. 6, no. 1, pp. 95–114, 2023.
[25] U. K. Lilhore et al., “Hybrid model for precise hepatitis-C classification using improved random forest and SVM method,” Sci. Rep., vol. 13, no. 1, pp. 1– 18, 2023, doi: 10.1038/s41598-023-36605-3.
[26] I. I. Ahmed, D. Y. Mohammed, and K. A. Zidan, “Diagnosis of hepatitis disease using machine learning techniques,” Indones. J. Electr. Eng. Comput. Sci., vol. 26, no. 3, pp. 1564–1572, 2022, doi: 10.11591/ijeecs.v26.i3.pp1564-1572.
[27] J. Wira and G. Putra, “Pengenalan Konsep Pembelajaran Mesin dan Deep learning Edisi 1.4,” vol. 4, no. August, pp. 45–46, 2020.
[28] Q. Hu, M. Feng, L. Lai, and J. Pei, “Prediction of drug-likeness using deep autoencoder neural networks,” Frontiers in Genetics, vol. 9, p. 585, 11 2018.
[29] Pengzhi Li, Yan Pei, and Jianqiang Li. A comprehensive survey on design and application of autoencoder in deep learning. Applied Soft Computing, page 110176, 2023.
[30] J. D. Pineda-Jaramillo, “A review of machine learning (ML) algorithms used for modeling travel mode choice•,” DYNA, vol. 86, no. 211, pp. 32–41, 2019, doi: 10.15446/dyna.v86n211.79743.
[31] V. Chang, V. Bhavani, Q. Xu, and A. Hossain, “An artificial intelligence model for heart disease detection using machine learning algorithms,” Healthcare Analytics, vol. 2, p. 100016, 01 2022.
[32] S. Nashif, R. Raihan, M. R. Islam, and M. Imam, “Heart disease detection by using machine learning algorithms and a real-time cardiovascular health monitoring system,” World Journal of Engineering and Technology, vol. 06, pp. 854–873, 01 2018. “Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri” 55
[33] A. Akella and S. Akella, “Machine learning algorithms for predicting coronary artery disease: Efforts toward an open source solution,” Futur. Sci. OA, vol. 7, no. 6, 2021, doi: 10.2144/fsoa-2020-0206.
[34] J. Liu, J. Wu, S. Liu, M. Li, K. Hu, and K. Li, “Predicting mortality of patients with acute kidney injury in the ICU using XGBoost model,” PLoS One, vol. 16, no. 2 February, pp. 1–11, 2021, doi: 10.1371/journal.pone.0246306.
[35] D. S. Putra, M. Azmi, Muslikhin, and W. Purwanto, “ANN Activation Function Comparative Study for Sinusoidal Data,” J. Phys. Conf. Ser., vol. 2406, no. 1, 2022, doi: 10.1088/1742-6596/2406/1/012029.
[36] N. Tabassum, A. Namoun, T. Alyas, A. Tufail, M. Taqi, and K. H. Kim, “Classification of Bugs in Cloud Computing Applications Using Machine learning Techniques,” Appl. Sci., vol. 13, no. 5, 2023, doi: 10.3390/app13052880.
[37] Paul Mooijman a, Cagatay Catal b, Bedir Tekinerdogan a, Arjen Lommen c, Marco Blokland c “The effects of data balancing approaches: A case study” Science Direct, vol. 132 January, 2023, doi: https://doi.org/10.1016/j.asoc.2022.109853.
[38] J. T. Hancock and T. M. Khoshgoftaar, “Survey on categorical data for neural networks,” J. Big Data, vol. 7, no. 1, 2020, doi: 10.1186/s40537-020-00305- w.
[39] I. Izonin, R. Tkachenko, N. Shakhovska, B. Ilchyshyn, and K. K. Singh, “A Two-Step Data Normalization Approach for Improving Classification Accuracy in the Medical Diagnosis Domain,” Mathematics, vol. 10, no. 11, pp. 1–18, 2022, doi: 10.3390/math10111942.
[40] M. Dener, S. Al, and G. Ok, “RFSE-GRU: Data Balanced Classification Model for Mobile Encrypted Traffic in Big Data Environment,” IEEE Access, no. February, pp. 21831–21847, 2023, doi: 10.1109/ACCESS.2023.3251745.
[41] M. Anasanti, K. Hilyati, and A. Novtariany, “The exploring feature selection techniques on classification algorithms for predicting type 2 diabetes at “Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri” 56 early stage,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, pp. 832–839, 11 2022.
[42] Marcos Roberto Machado, Salma Karray, Ivaldo Tributino de Sousa, “LightGBM: an Effective Decision Tree GradientBoosting Method to Predict Customer Loyalty in the Finance Industry” The 14th International 64 Conference on Computer Science & Education (ICCSE 2019) August 19-21, 2019. Toronto, Canada. DOI : 10.1109/ICCSE.2019.8845529.
[43] J. A. Nichols, H. W. Herbert Chan, and M. A. B. Baker, “Machine learning: applications of artificial intelligence to imaging and diagnosis,” Biophys. Rev., vol. 11, no. 1, pp. 111–118, 2019, doi: 10.1007/s12551-018-0449-9.
[44] E. Suryawati et al., “Unsupervised feature learning-based encoder and adversarial networks,” J. Big Data, vol. 8, no. 1, 2021, doi: 10.1186/s40537-021- 00508-9.
Detail Informasi
Tesis ini ditulis oleh :
- Nama : YUTRI AMELIA
- NIM : 14210237
- Prodi : Ilmu Komputer
- Kampus : Margonda
- Tahun : 2023
- Periode : II
- Pembimbing : Dr. Agus Subekti, M.T
- Asisten :
- Kode : 0041.S2.IK.TESIS.II.2023
- Diinput oleh : NZH
- Terakhir update : 25 Juni 2024
- Dilihat : 109 kali
TENTANG PERPUSTAKAAN

E-Library Perpustakaan Universitas Nusa Mandiri merupakan
platform digital yang menyedikan akses informasi di lingkungan kampus Universitas Nusa Mandiri seperti akses koleksi buku, jurnal, e-book dan sebagainya.
INFORMASI
Alamat : Jln. Jatiwaringin Raya No.02 RT08 RW 013 Kelurahan Cipinang Melayu Kecamatan Makassar Jakarta Timur
Email : perpustakaan@nusamandiri.ac.id
Jam Operasional
Senin - Jumat : 08.00 s/d 20.00 WIB
Isitirahat Siang : 12.00 s/d 13.00 WIB
Istirahat Sore : 18.00 s/d 19.00 WIB
Perpustakaan Universitas Nusa Mandiri @ 2020