Perbandingan Prediksi Performance Kredit Pada Peer to- Peer Lending Syariah Dengan Ensemble Dan WoE IV

  • ACHMAD RIVANI FAUZI
  • 14210186

ABSTRAK

ABSTRAK

Nama              : Achmad Rivani Fauzi

NIM                 : 14210186

Program Studi : Ilmu Komputer

Fakultas          :Teknologi Informasi

Jenjang           : Strata Dua (S2)

Konsentrasi     : Data Mining

Judul              : “Perbandingan Prediksi Performance Kredit Pada Peer to- Peer Lending Syariah Dengan Ensemble Dan WoE IV” Peer to peer lending Syariah merupakan bentuk pinjam-meminjam berbasis Syariah yang menyediakan layanan pinjam-meminjam sesuai prinsip Syariah, serta menawarkan opsi investasi dengan potensi keuntungan lebih tinggi melalui skema bagi hasil. Namun dalam pemberian kredit sering terjadi kredit macet yang disebabkan oleh gagalnya pembayaran atau pengembalian dari nasabah, masalah ini dapat terjadi oleh Lembaga Keuangan manapun ketika memberikan kredit. Dengan memanfaatkan data mining dan algoritma machine learning, penelitian ini akan memfokuskan analisis pada variabel-variabel yang relevan untuk memprediksi kelayakan kredit.dan memberikan prediksi performa kredit. Langkahlangkah yang diambil meliputi mengumpulkan data tentang pemahaman bisnis, menyiapkan data, memproses fitur-fitur, dan mengolah data agar menghasilkan prediksi yang akurat. Hasil menunjukan akurasi algoritma Ensemble sebesar 97,54%, Decision Tree 82,75%, Random Forest 81,30%, dengan penambahan metode Weight of Evidence dan Invformation Value.

KATA KUNCI

Peer to peerlending syariah,Kredit Macet,Ensemble,Decision Tree,Random Forest


DAFTAR PUSTAKA

DAFTAR PUSTAKA

[1] Risna Kartika, “Analisis Peer To Peer Lending Di Indonesia,” AKUNTABILITAS J. Ilm. Ilmu-Ilmu Ekon., vol. 12, no. 2, pp. 75–86, 2020, doi: 10.35457/akuntabilitas.v12i2.902.

[2] R. R. Suryono, B. Purwandari, and I. Budi, “Peer to peer (P2P) lending problems and potential solutions: A systematic literature review,” Procedia Comput. Sci., vol. 161, pp. 204–214, 2019, doi: 10.1016/j.procs.2019.11.116.

[3] Otoritas Jasa Keuangan, “Peraturan Otoritas Jasa Keuangan Nomor: 77 /POJK.01/2016 TENTANG LAYANAN PINJAM MEMINJAM UANG BERBASIS TEKNOLOGI INFORMASI,” Otoritas Jasa Keuang., pp. 1– 29, 2016, [Online]. Available: https://www.ojk.go.id/id/regulasi/otoritasjasa-keuangan/peraturan-ojk/Documents/Pages/POJK-Nomor-77-POJK.01- 2016/SAL - POJK Fintech.pdf.

[4] B. Li, “Online Loan Default Prediction Model Based on Deep Learning Neural Network,” Comput. Intell. Neurosci., vol. 2022, pp. 1–9, Aug. 2022, doi: 10.1155/2022/4276253.

[5] A. Desfiandi, I. Darmajaya, F. Singagerda, I. Darmajaya, R. Dyasvaro, and I. Darmajaya, FinTech Keuangan Inovasi, no. September. 2022.

[6] S. Wahyuningsih, “Implementasi Peer To Peer Lending Di Indonesia, Layanan Pembiayaan Berbasis Financial Technology,” J. Ilm. Mhs. FEB Univ. Brawijaya, vol. 8, pp. 1–26, 2019, [Online]. Available: https://jimfeb.ub.ac.id/index.php/jimfeb/article/view/6115.

[7] R. Hartanto and J. P. Ramli, “Hubungan Hukum Para Pihak Dalam Peer To Peer Lending,” J. Huk. Ius Quia Iustum, vol. 25, no. 2, pp. 320–338, 2018, doi: 10.20885/iustum.vol25.iss2.art6.

[8] Y. Li, X. Wang, B. Djehiche, and X. Hu, “Credit scoring by incorporating dynamic networked information,” Eur. J. Oper. Res., vol. 286, no. 3, pp. 1103–1112, 2020, doi: 10.1016/j.ejor.2020.03.078.

[9] “Tunifund.” https://katadata.co.id/yuliawati/digital/641992a30aefe/ojkungkap-penyebab-kredit-bermasalah-pinjol-fintech-lending-melonjak. Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri

[10] “Pantau OJK.” https://katadata.co.id/desysetyowati/digital/6405a02e7fdcf/daftar-startuppinjaman-online-dipantau-oleh-ojk.

[11] “P2P Syariah.” https://alamisharia.co.id/blogs/beda-p2p-lending-syariahdan-konvensional/.

[12] “resiko p2p syariah.” https://www.cnbcindonesia.com/tech/20220720164004-37-357185/potensikeuntungan-lebih-tinggi-ini-risiko-p2p-syariah.

[13] W. Li, S. Ding, Y. Chen, and S. Yang, “Heterogeneous ensemble for default prediction of peer-to-peer lending in China,” IEEE Access, vol. 6, no. c, pp. 54396–54406, 2018, doi: 10.1109/ACCESS.2018.2810864.

[14] J. Yang, Q. Li, and D. Luo, “Research on P2P Credit Risk Assessment Model Based on RBM Feature Extraction—Take SME Customers as an Example,” Open J. Bus. Manag., vol. 07, no. 04, pp. 1553–1563, 2019, doi: 10.4236/ojbm.2019.74107.

[15] “Fintech,” [Online]. Available: https://sikapiuangmu.ojk.go.id/FrontEnd/CMS/Article/10468.

[16] “Skema Fintech.” https://duwitmu.com/kta/fintech-p2p-lending-indonesia.

[17] D. T. Mu. Muzayyanah, “Analisis Pelaksanaan Musyarakah Pada Layanan Financial Technology Peer To Peer Lending Syariah Di Indonesia,” J. AlMizan, vol. 3, no. Vol 3 No 2 (2019), pp. 32–53, 2019, [Online]. Available: https://journal.iiq.ac.id/index.php/almizan/article/view/101/82.

[18] S. Aisyah, “Behavior Analysis of Umkm in Indonesia in Using Fintech Lending ( Comparative Study Between Sharia Fintech Lending and Conventional Fintech Lending,” Int. J. Educ. Rev. Law Soc. Sci., vol. 3, no. 3, pp. 811–825, 2023.

[19] DSN-MUI, “Fatwa Dewan Syariah Nasional-Majelis Ulama Indonesia No: 117/DSN-MUI/II/2018 Tentang Layanan Pembiayaan Berbasis Teknologi Informasi Berdasarkan Prinsip Syariah,” p. 14, 2018.

[20] W. Haoxiang and S. S, “Big Data Analysis and Perturbation using Data Mining Algorithm,” J. Soft Comput. Paradig., vol. 3, no. 1, pp. 19–28, 2021, doi: 10.36548/jscp.2021.1.003. Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri

[21] Y. Zhong, L. Chen, C. Dan, and A. Rezaeipanah, A systematic survey of data mining and big data analysis in internet of things, vol. 78, no. 17. Springer US, 2022.

[22] S. A. Alwarthan, N. Aslam, and I. U. Khan, “Predicting Student Academic Performance at Higher Education Using Data Mining: A Systematic Review,” Appl. Comput. Intell. Soft Comput., vol. 2022, 2022, doi: 10.1155/2022/8924028.

[23] I. E. Salem and M. M. Mijwil, “Introduction to The Data Mining Techniques in Cybersecurity,” Mesopotamian J. Big Data, vol. 2022, pp. 28–37, 2022, doi: 10.58496/mjcs/2022/004.

[24] C. Pete et al., “Crisp-Dm 1.0,” Cris. Consort., p. 76, 2000.

[25] K. Kristiawan and A. Widjaja, “Perbandingan Algoritma Machine Learning dalam Menilai Sebuah Lokasi Toko Ritel,” J. Tek. Inform. dan Sist. Inf., vol. 7, no. 1, pp. 35–46, 2021, doi: 10.28932/jutisi.v7i1.3182.

[26] C. Avci, M. Budak, N. Yagmur, and F. B. Balcik, “Comparison between random forest and support vector machine algorithms for LULC classification,” Int. J. Eng. Geosci., vol. 8, no. 1, pp. 1–10, 2023, doi: 10.26833/ijeg.987605.

[27] L. Sathish kumar, V. Pandimurugan, D. Usha, M. Nageswara Guptha, and M. S. Hema, “Random forest tree classification algorithm for predicating loan,” Mater. Today Proc., vol. 57, pp. 2216–2222, 2022, doi: 10.1016/j.matpr.2021.12.322.

[28] S. S. Kshatri, D. Singh, B. Narain, S. Bhatia, M. T. Quasim, and G. R. Sinha, “An Empirical Analysis of Machine Learning Algorithms for Crime Prediction Using Stacked Generalization: An Ensemble Approach,” IEEE Access, vol. 9, pp. 67488–67500, 2021, doi: 10.1109/ACCESS.2021.3075140.

[29] H. Baradaran Rezaei, A. Amjadian, M. V. Sebt, R. Askari, and A. Gharaei, “An ensemble method of the machine learning to prognosticate the gastric cancer,” Ann. Oper. Res., 2022, doi: 10.1007/s10479-022-04964-1.

[30] A. Sharafati, S. B. H. S. Asadollah, and M. Hosseinzadeh, “The potential of new ensemble machine learning models for effluent quality parameters Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri prediction and related uncertainty,” Process Saf. Environ. Prot., vol. 140, pp. 68–78, 2020, doi: 10.1016/j.psep.2020.04.045.

[31] J. Chen, H. Huang, A. G. Cohn, D. Zhang, and M. Zhou, “Machine learning-based classification of rock discontinuity trace: SMOTE oversampling integrated with GBT ensemble learning,” Int. J. Min. Sci. Technol., vol. 32, no. 2, pp. 309–322, 2022, doi: 10.1016/j.ijmst.2021.08.004.

[32] M. S. Islam, M. Arifuzzaman, and M. S. Islam, “SMOTE Approach for Predicting the Success of Bank Telemarketing,” TIMES-iCON 2019 - 2019 4th Technol. Innov. Manag. Eng. Sci. Int. Conf., 2019, doi: 10.1109/TIMES-iCON47539.2019.9024630.

[33] A. Yaqin, M. Rahardi, and F. F. Abdulloh, “Accuracy Enhancement of Prediction Method using SMOTE for Early Prediction Student’s Graduation in XYZ University,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 6, pp. 418–424, 2022, doi: 10.14569/IJACSA.2022.0130652.

[34] “K fold.” https://mti.binus.ac.id/2017/11/24/10-fold-cross-validation/.

[35] F. F. Irfani, “Analisis Sentimen Review Aplikasi Ruangguru Menggunakan Algoritma Support Vector Machine,” JBMI (Jurnal Bisnis, Manajemen, dan Inform., vol. 16, no. 3, pp. 258–266, 2020, doi: 10.26487/jbmi.v16i3.8607.

[36] A. Luque, A. Carrasco, A. Martín, and A. de las Heras, “The impact of class imbalance in classification performance metrics based on the binary confusion matrix,” Pattern Recognit., vol. 91, pp. 216–231, 2019, doi: 10.1016/j.patcog.2019.02.023.

[37] Z. Yuan, “Research on Credit Risk Assessment of P2P Network Platform: Based on the Logistic Regression Model of Evidence Weight,” J. Res. Business, Econ. Manag., vol. 10, no. 2, pp. 1874–1881, 2018, [Online]. Available: www.scitecresearch.com/journals/index.php/jrbem.

[38] O. Saputra, T. Faturohman, and S. K. Wiryono, “Social Media Data To Improve Credit Scoring Accuracy With a Data Mining Approach Based on Support Vector Machine: Case Study of an Online Peer To Peer Lending in Indonesia,” Int. J. Accounting, Financ. Bus., no. 6, pp. 1–14, 2021. Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri

[39] Z. Zhang, K. Niu, and Y. Liu, “A deep learning based online credit scoring model for P2P lending,” IEEE Access, vol. 8, pp. 177307–177317, 2020, doi: 10.1109/ACCESS.2020.3027337.

[40] R. F. Malik and H. Hermawan, “Credit Scoring Using Classification and Regression Tree (CART) Algorithm and Binary Particle Swarm Optimization,” Int. J. Electr. Comput. Eng., vol. 8, no. 6, p. 5425, 2018, doi: 10.11591/ijece.v8i6.pp5425-5431.

[41] S. K. Trivedi, “A study on credit scoring modeling with different feature selection and machine learning approaches,” Technol. Soc., vol. 63, no. September, p. 101413, 2020, doi: 10.1016/j.techsoc.2020.101413.

[42] G. Babaei and S. Bamdad, “Application of credit-scoring methods in a decision support system of investment for peer-to-peer lending,” Int. Trans. Oper. Res., vol. 30, no. 5, pp. 2359–2373, 2023, doi: 10.1111/itor.13064.

[43] I. Sugiyarto, B. Sudarsono, and U. Faddillah, “Performance Comparison of Data Mining Algorithm to Predict Approval of Credit Card,” SinkrOn, vol. 4, no. 1, p. 149, 2019, doi: 10.33395/sinkron.v4i1.10181.

[44] “Data1_tesis.” .

[45] L. H. Li, A. K. Sharma, R. Ahmad, and R. C. Chen, Predicting the Default Borrowers in P2P Platform Using Machine Learning Models, vol. 1434, no. September. Springer International Publishing, 2021.

[46] Otoritas Jasa Keuangan, “Peraturan Otoritas Jasa Keuangan Republik Indonesia Nomor 10 /Pojk.05/2022 Tentang Layanan Pendanaan Bersama Berbasis Teknologi Informasi,” no. 184, pp. 1–27, 2022.

[47]“TKB90.” https://sikapiuangmu.ojk.go.id/FrontEnd/CMS/Article/4076.

Detail Informasi

Tesis ini ditulis oleh :

  • Nama : ACHMAD RIVANI FAUZI
  • NIM : 14210186
  • Prodi : Ilmu Komputer
  • Kampus : Margonda
  • Tahun : 2023
  • Periode : I
  • Pembimbing : Prof. Ir. Dr. Dwiza Riana, S,Si, MM, M.Kom
  • Asisten :
  • Kode : 0040.S2.IK.TESIS.I.2023
  • Diinput oleh : NZH
  • Terakhir update : 24 Juni 2024
  • Dilihat : 88 kali

TENTANG PERPUSTAKAAN


PERPUSTAKAAN UNIVERSITAS NUSA MANDIRI


E-Library Perpustakaan Universitas Nusa Mandiri merupakan platform digital yang menyedikan akses informasi di lingkungan kampus Universitas Nusa Mandiri seperti akses koleksi buku, jurnal, e-book dan sebagainya.


INFORMASI


Alamat : Jln. Jatiwaringin Raya No.02 RT08 RW 013 Kelurahan Cipinang Melayu Kecamatan Makassar Jakarta Timur

Email : perpustakaan@nusamandiri.ac.id

Jam Operasional
Senin - Jumat : 08.00 s/d 20.00 WIB
Isitirahat Siang : 12.00 s/d 13.00 WIB
Istirahat Sore : 18.00 s/d 19.00 WIB

Perpustakaan Universitas Nusa Mandiri @ 2020