Evaluasi Prediksi Harga Komoditas Pangan Berbasis Recurrent Neural Network, Long Short-Term Memory, Dan Transformer

  • NIKI AWALL OEDIN
  • 14002441

ABSTRAK

ABSTRAK

Nama              : Niki Awalloedin

NIM                 : 14002441

Program Studi : Ilmu Komputer

Jenjang            : Strata Dua (S2)

Konsentrasi      : Data Mining

Judul Tesis  : Evaluasi Prediksi Harga Komoditas Pangan Berbasis Recurrent Neural Network, Long Short-Term Memory, Dan Transformer

Penelitian ini penulis mencoba menerapkan algoritma RNN, LSTM, BILSTM dan Transformer dalam memprediksi harga komoditas pangan (Beras, Daging Ayam, Telur Ayam). Prediksi harga pangan akan sangat bermanfaat bagi konsumen maupun produsen, untuk pemerintah hal ini dapat menjadi penunjang keputusan dalam mengambil langkah yang tepat untuk menjamin harga pangan tetap terjangkau oleh masyarakat. Dalam penelitian ini menggunakan data history time series tahun 2017 – 2023 yang terdapat pada situs Pusat Informasi Harga Pangan Strategis Nasional (PIHPSN) pada alamat website https://hargapangan.id/, dalam website terbut terdapat daftar komoditas pangan strategis diantaranya yaitu Beras, Daging Ayam, Telur. Data tersebut akan digunakan sebagai data dasar dalam penelitian ini. Data series pangan tersebut akan diproses menggunakan algoritma RNN, LSTM , BiLSTM. Dan Transformer

KATA KUNCI

Data Mining,Time Series,RNN,LSTM,BiLSTM


DAFTAR PUSTAKA

DAFTAR PUSTAKA

[1] O. Helbawanti, W. A. Saputro, and A. N. Ulfa, “Pengaruh Harga Bahan Pangan Terhadap Inflasi Di Indonesia,” AGRISAINTIFIKA J. Ilmu-Ilmu Pertan., vol. 5, no. 2, p. 107, 2021, doi: 10.32585/ags.v5i2.1859.

[2] I. N. Hidayati and Suryanto, “Pengaruh Perubahan Iklim Terhadap Produksi,” J. Ekon. dan Stud. Pembang., vol. 16, no. 1, pp. 42–52, 2015.

[3] B. Adebanjo Adeniyi, F. Ogbeide Okogun, O. Opiribo, A. Adeniyi α, F. Ogbeide Okogun σ, and O. Opiribo ρ, “Assessing the Price Relationship and Weather Impact on Selected Pairs of Closely Related Commodities,” vol. 21, no. 1, 2021.

[4] Y. Lefkovitz, “Climate and Commodity Prices : An Analysis of the Role of ENSO Forecasts in Agricultural Commodity Markets by Yosef Lefkovitz,” Thesis, no. May, 2013.

[5] T. Setiadi, F. Noviyanto, H. Hardianto, A. Tarmuji, A. Fadlil, and M. Wibowo, “Implementation of naïve bayes method in food crops planting recommendation,” Int. J. Sci. Technol. Res., vol. 9, no. 2, pp. 4750–4755, 2020.

[6] M. Wibowo and R. Ramadhani, “Perbandingan Metode Klasifikasi Data Mining Untuk Rekomendasi Tanaman Pangan,” J. Media Inform. Budidarma, vol. 5, no. 3, p. 913, 2021, doi: 10.30865/mib.v5i3.3086.

[7] R. Rahmadini, Enjel Erika LorencisLubis, Aji Priansyah, Yolanda R.W.N, and Tuti Meutia, “Penerapan Data Mining Untuk Memprediksi Harga Bahan Pangan Di Indonesia Menggunakan Algoritma K-Nearest Neighbor,” J. Mhs. Akunt. Samudra, vol. 4, no. 4, pp. 223–235, 2023, doi: 10.33059/jmas.v4i4.7074.

[8] Z. Wang et al., “Climate and environmental data contribute to the prediction of grain commodity prices using deep learning,” J. Sustain. Agric. Environ., vol. 2, no. 3, pp. 251–265, 2023, doi: 10.1002/sae2.12041.

[9] H. Mo, Y. Zhang, Y. Liu, and Y. Zheng, “Prediction of rice yield based on LSTM long short term memory network,” J. Phys. Conf. Ser., vol. 1952, no. 4, pp. 0–7, 2021, doi: 10.1088/1742-6596/1952/4/042033. 62 Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri

[10] A. Arfan and L. ETP, “Perbandingan Algoritma Long Short-Term Memory dengan SVR Pada Prediksi Harga Saham di Indonesia,” Petir, vol. 13, no. 1, pp. 33–43, 2020, doi: 10.33322/petir.v13i1.858.

[11] J. K. Lubis and I. Kharisudin, “Metode Long Short Term Memory dan Generalized Autoregressive Conditional Heteroscedasticity untuk Pemodelan Data Saham,” Prism. Pros. Semin. Nas. …, vol. 4, pp. 652–658, 2021, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/article/view/44897

[12] H. F. Fadli and A. F. Hidayatullah, “Identifikasi Cyberbullying Pada Media Sosial Twitter Menggunakan Metode Klasifikasi Random Forest,” 2019.

[13] R. K. Paul et al., “Machine learning techniques for forecasting agricultural prices: A case of brinjal in Odisha, India,” PLoS One, vol. 17, no. 7 July, pp. 1–17, 2022, doi: 10.1371/journal.pone.0270553.

[14] M. H. Menhaj and M. Kavoosi-Kalashami, “Developing a hybrid forecasting system for agricultural commodity prices (case study: Thailand rice free on board price),” Cienc. Rural, vol. 52, no. 8, 2022, doi: 10.1590/0103- 8478cr20201128.

[15] M. R. Bhardwaj et al., “An innovative Deep Learning Based Approach for Accurate Agricultural Crop Price Prediction,” pp. 1–9, 2023, doi: 10.1109/CASE56687.2023.10260494.

[16] Mahesh Kankar & M. Anand Kumar, “Price Prediction of Agricultural Products Using Deep Learning,” in Advanced Machine Intelligence and Signal Processing, Advanced M., Springer, Singapore, 2022, p. LNEE,volume 858. doi: https://doi.org/10.1007/978-981-19-0840-8_38.

[17] BI, “PUSAT INFORMASI HARGA PANGAN STRATEGIS NASIONAL,” Bank Indonesia. [Online]. Available: https://hargapangan.id/

[18] A. Nilsen, “Perbandingan Model RNN, Model LSTM, dan Model GRU dalam Memprediksi Harga Saham-Saham LQ45,” J. Stat. dan Apl., vol. 6, no. 1, pp. 137–147, 2022, doi: 10.21009/jsa.06113.

[19] F. Gers, “Long Short-Term Memory in Recurrent Neural Networks (a PhD thesis),” Lausanne, EPFL, vol. 2366, 2001, [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.28.6677&rep=re 63 Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri p1&type=pdf%5Cnhttp://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1. 1.28.6677

[20] Hendri, “Character Recognition Dengan Menggunakan Jaringan Syaraf Tiruan,” J. TIMES, vol. III, no. 2, pp. 1–5, 2014.

[21] R. Murtaza, P. Harshal, and V. Shraddha, “Predicting Stock Prices Using LSTM,” Int. J. Sci. Res., vol. 6, no. 4, pp. 2319–7064, 2015, [Online]. Available: https://www.ijsr.net/archive/v6i4/ART20172755.pdf

[22] dProgrammer lopez, “RNN, LSTM & GRU,” http://dprogrammer.org/. Accessed: Jul. 15, 2023. [Online]. Available: http://dprogrammer.org/rnnlstm-gru

[23] C. Blog, “Understanding LSTM Networks,” colah.github.io. Accessed: Jul. 15, 2023. [Online]. Available: https://colah.github.io/posts/2015-08- Understanding-LSTMs/

[24] E. Zvornicanin, “Differences Between Bidirectional and Unidirectional LSTM,” baeldung.com. Accessed: Jul. 15, 2023. [Online]. Available: https://www.baeldung.com/cs/bidirectional-vs-unidirectional-lstm

[25] A. Veltman, D. W. J. Pulle, and R. W. De Doncker, “The Transformer,” Power Syst., no. Nips, pp. 47–82, 2016, doi: 10.1007/978-3-319-29409-4_3.

[26] A. Dosovitskiy et al., “an Image Is Worth 16X16 Words: Transformers for Image Recognition At Scale,” ICLR 2021 - 9th Int. Conf. Learn. Represent., 2021.

[27] Y. Gong, Y. A. Chung, and J. Glass, “Ast: Audio spectrogram transformer,” Proc. Annu. Conf. Int. Speech Commun. Assoc. INTERSPEECH, vol. 1, pp. 56–60, 2021, doi: 10.21437/Interspeech.2021-698.

[28] G. Yenduri et al., “Generative Pre-trained Transformer: A Comprehensive Review on Enabling Technologies, Potential Applications, Emerging Challenges, and Future Directions,” pp. 1–40, 2023, [Online]. Available: http://arxiv.org/abs/2305.10435

[29] J. Devlin, M.-W. Chang, K. Lee, K. T. Google, and A. I. Language, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” Naacl-Hlt 2019, no. Mlm, pp. 4171–4186, 2018.

[30] Khalis Sofi, Aswan Supriyadi Sunge, Sasmitoh Rahmad Riady, and Antika 64 Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri Zahrotul Kamalia, “Perbandingan Algoritma Linear Regression, Lstm, Dan Gru Dalam Memprediksi Harga Saham Dengan Model Time Series,” Seminastika, vol. 3, no. 1, pp. 39–46, 2021, doi: 10.47002/seminastika.v3i1.275.

[31] R. Ly, F. Traore, and K. Dia, “Forecasting Commodity Prices Using Long Short-Term Memory Neural Networks,” no. February, 2021, [Online]. Available: http://arxiv.org/abs/2101.03087

[32] Y. H. Gu, D. Jin, H. Yin, R. Zheng, X. Piao, and S. J. Yoo, “Forecasting Agricultural Commodity Prices Using Dual Input Attention LSTM,” Agric., vol. 12, no. 2, 2022, doi: 10.3390/agriculture12020256.

[33] T. Oswari, “Prediction analysis of food crop farmer index price during Covid-19 pandemic using ARIMA and LSTM,” J. Manag. Inf. Decis. Sci., vol. 25, no. 2S, 2022, [Online]. Available: https://www.abacademies.org/articles/prediction-analysis-of-food-cropfarmer-index-price-during-covid19-pandemic-using-arima-and-lstm13360.html

[34] R. A. Falah and M. Rachmaniah, “Price Prediction Model for Red and Curly Red Chilies using Long Short Term Memory Method,” Indones. J. Stat. Its Appl., vol. 6, no. 1, pp. 143–160, 2022, doi: 10.29244/ijsa.v6i1p143-160.

[35] Y. Karyadi, “Prediksi Kualitas Udara Dengan Metoda LSTM, Bidirectional LSTM, dan GRU,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 1, pp. 671–684, 2022, doi: 10.35957/jatisi.v9i1.1588.

[36] Sabar Sautomo and Hilman Ferdinandus Pardede, “Prediksi Belanja Pemerintah Indonesia Menggunakan Long Short-Term Memory (LSTM),” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 1, pp. 99–106, 2021, doi: 10.29207/resti.v5i1.2815.

[37] I. Idham, M. Ghudafa Taufik Akbar, S. Panggabean, and M. Noor, “Perbandingan Prediksi Harga Saham Dengan Menggunakan LSTM GRU Dengan Transformer,” Smart Comp Jurnalnya Orang Pint. Komput., vol. 11, no. 1, pp. 44–47, 2022, doi: 10.30591/smartcomp.v11i1.3185.

[38] W. Hastomo, A. S. B. Karno, N. Kalbuana, E. Nisfiani, and L. ETP, “Optimasi Deep Learning untuk Prediksi Saham di Masa Pandemi Covid- 65 Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri 19,” J. Edukasi dan Penelit. Inform., vol. 7, no. 2, p. 133, 2021, doi: 10.26418/jp.v7i2.47411.

[39] M. L. Ashari and M. Sadikin, “Prediksi Data Transaksi Penjualan Time Series Menggunakan Regresi Lstm,” J. Nas. Pendidik. Tek. Inform., vol. 9, no. 1, p. 1, 2020, doi: 10.23887/janapati.v9i1.19140.

[40] M. Zayini Anwar and S. Habibi, “Analisis Prediksi Performasi Arah Pergerakan Saham Apple (Appl) Menggukan Metode Recurrent Neural Networks/Long Short Term Memory Networks (Rnn/Lstm),” no. February, 2020.

[41] A. Jaedun, “Oleh : Amat Jaedun,” Metodol. Penelit. Eksperimen, pp. 0–12, 2011.

Detail Informasi

Tesis ini ditulis oleh :

  • Nama : NIKI AWALL OEDIN
  • NIM : 14002441
  • Prodi : Ilmu Komputer
  • Kampus : Margonda
  • Tahun : 2023
  • Periode : I
  • Pembimbing : Dr. Hilman F. Pardede, ST, MEICT
  • Asisten :
  • Kode : 0039.S2.IK.TESIS.I.2023
  • Diinput oleh : NZH
  • Terakhir update : 24 Juni 2024
  • Dilihat : 165 kali

TENTANG PERPUSTAKAAN


PERPUSTAKAAN UNIVERSITAS NUSA MANDIRI


E-Library Perpustakaan Universitas Nusa Mandiri merupakan platform digital yang menyedikan akses informasi di lingkungan kampus Universitas Nusa Mandiri seperti akses koleksi buku, jurnal, e-book dan sebagainya.


INFORMASI


Alamat : Jln. Jatiwaringin Raya No.02 RT08 RW 013 Kelurahan Cipinang Melayu Kecamatan Makassar Jakarta Timur

Email : perpustakaan@nusamandiri.ac.id

Jam Operasional
Senin - Jumat : 08.00 s/d 20.00 WIB
Isitirahat Siang : 12.00 s/d 13.00 WIB
Istirahat Sore : 18.00 s/d 19.00 WIB

Perpustakaan Universitas Nusa Mandiri @ 2020