Prediksi Pendapatan Pemerintah Indonesia Menggunakan Long Short-Term Memory
- MAHMUD
- 14210139
ABSTRAK
ABSTRAK
Nama : Mahmud
NIM : 14210139
Program Studi : Ilmu Komputer
Fakultas : Teknologi Informasi
Jenjang : Strata Dua (S2)
Konsentrasi : Data Mining
Judul Tesis : “Prediksi Pendapatan Pemerintah Indonesia Menggunakan Long Short-Term Memory”
Pendapatan pemerintah memegang peranan penting dalam mencapai tujuan pembangunan nasional. Dalam rangka pengelolaan kas negara yang optimal, diperlukan prediksi pendapatan pemerintah yang akurat sehingga kas dapat dimanfaatkan dengan maksimal untuk periode yang akan datang. Penelitian ini mengkaji metode yang tepat untuk melakukan prediksi pendapatan pemerintah berdsarkan data history pendapatan pemerintah tahun 2013 sampai dengan 2022. Dalam penelitian ini, diusulkan penerapan model Long Short-Term Memory (LSTM) untuk prediksi pendapatan pemerintah. Eksperimen menunjukkan model LSTM dengan menggunakan empat hidden layer dan hyperparameter yang tepat dapat menghasilkan performa Mean Absolute Percentage Error (MAPE) sebesar 11,14% dan Root Mean Square Error (RMSE) sebesar 15,43%. Ini lebih baik dibandingkan pemodelan konvensional Autoregressive Integrated Moving Average (ARIMA) dan Seasonal Autoregressive Integrated Moving Average (SARIMA) sebagai model pembanding.
KATA KUNCI
Pendapatan pemerintah,machine learning,LSTM,ARIMA,SARIMA
DAFTAR PUSTAKA
DAFTAR PUSTAKA
[1] Undang-undang No. 17 Tahun 2003 tentang Keuangan Negara. 2003.
[2] Kementerian Keuangan, Peraturan Menteri Keuangan Nomor 225/PMK.05/2020 tentang Sistem Penerimaan Negara Secara Elektronik. Jakarta: https://jdih.kemenkeu.go.id, 2020.
[3] M. Mahmud, W. Gata, J. L. Putra, H. B. Novitasari, and S. A. Saputra, “Desain Informasi Cara Bayar Penerimaan Negara menggunakan Pemodelan Finite State Automata,” Edumatic: Jurnal Pendidikan Informatika, vol. 6, no. 1, pp. 21–30, Jun. 2022, doi: 10.29408/edumatic.v6i1.5053.
[4] N. A. Nugraha and A. Darono, “Discourses And Institutions In Tax Policy And Fiscal Sustainability: Evidence From Indonesia,” Jurnal Pajak dan Keuangan Negara (PKN), vol. 4, no. 1, pp. 61–71, Aug. 2022, doi: 10.31092/JPKN.V4I1.1722.
[5] A. K. Pundir, L. Ganapathy, P. Maheshwari, and M. N. Kumar, “Machine Learning for Revenue Forecasting: A Case Study in Retail business,” 11th Annual IEEE Information Technology, Electronics and Mobile Communication Conference, IEMCON 2020, pp. 201–207, Nov. 2020, doi: 10.1109/IEMCON51383.2020.9284819.
[6] I. Iskandar, R. Willett, and S. Xu, “The development of a government cash forecasting model,” Journal of Public Budgeting, Accounting and Financial Management, vol. 30, no. 4, pp. 368–383, Nov. 2018, doi: 10.1108/JPBAFM-04-2018-0036/FULL/PDF.
[7] S. Siami-Namini and A. S. Namin, “Forecasting Economics and Financial Time Series: ARIMA vs. LSTM,” Mar. 2018, doi: 10.48550/arxiv.1803.06386.
[8] S. M. Zandavi, T. H. Rashidi, and F. Vafaee, “Forecasting the Spread of Covid-19 Under Control Scenarios Using LSTM and Dynamic Behavioral Models,” IEEE Trans Cybern, vol. 52, no. 11, pp. 11977–11989, May 2020, doi: 10.1109/TCYB.2021.3120967.
[9] U. M. Sirisha, M. C. Belavagi, and G. Attigeri, “Profit Prediction Using ARIMA, SARIMA and LSTM Models in Time Series Forecasting: A 52 Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri Comparison,” IEEE Access, vol. 10, pp. 124715–124727, 2022, doi: 10.1109/ACCESS.2022.3224938.
[10] S. Wang, J. Zhao, C. Shao, C. D. Dong, and C. Yin, “Truck Traffic Flow Prediction Based on LSTM and GRU Methods with Sampled GPS Data,” IEEE Access, vol. 8, pp. 208158–208169, 2020, doi: 10.1109/ACCESS.2020.3038788.
[11] Kementerian Keuangan, Peraturan Menteri Keuangan Nomor 118/PMK.01/2021 tentang Organisasi Dan Tata Kerja Kementerian Keuangan. Jakarta: https://jdih.kemenkeu.go.id, 2021.
[12] G. Schuh et al., “Data Mining Definitions and Applications for the Management of Production Complexity,” Procedia CIRP, vol. 81, pp. 874– 879, Jan. 2019, doi: 10.1016/J.PROCIR.2019.03.217.
[13] D. Dheda, L. Cheng, and A. M. Abu-Mahfouz, “Long Short Term Memory Water Quality Predictive Model Discrepancy Mitigation Through Genetic Algorithm Optimisation and Ensemble Modeling,” IEEE Access, vol. 10, pp. 24638–24658, 2022, doi: 10.1109/ACCESS.2022.3152818.
[14] Q. Ye, X. Yang, C. Chen, and J. Wang, “River Water Quality Parameters Prediction Method Based on LSTM-RNN Model,” Proceedings of the 31st Chinese Control and Decision Conference, CCDC 2019, pp. 3024–3028, Jun. 2019, doi: 10.1109/CCDC.2019.8832885.
[15] A. Yadav, C. K. Jha, and A. Sharan, “Optimizing LSTM for time series prediction in Indian stock market,” Procedia Comput Sci, vol. 167, pp. 2091– 2100, Jan. 2020, doi: 10.1016/j.procs.2020.03.257.
[16] Q. Sun, J. Wan, and S. Liu, “Estimation of Sea Level Variability in the China Sea and Its Vicinity Using the SARIMA and LSTM Models,” IEEE J Sel Top Appl Earth Obs Remote Sens, vol. 13, pp. 3317–3326, 2020, doi: 10.1109/JSTARS.2020.2997817.
[17] Y. Zhang, M. Yamamoto, G. Suzuki, and H. Shioya, “Collaborative Forecasting and Analysis of Fish Catch in Hokkaido From Multiple Scales by Using Neural Network and ARIMA Model,” IEEE Access, vol. 10, pp. 7823–7833, 2022, doi: 10.1109/ACCESS.2022.3141767. 53 Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri
[18] R. R. Sharma, M. Kumar, S. Maheshwari, and K. P. Ray, “EVDHMARIMA-Based Time Series Forecasting Model and Its Application for COVID-19 Cases,” IEEE Trans Instrum Meas, vol. 70, 2021, doi: 10.1109/TIM.2020.3041833.
[19] B. G. Prianda and E. Widodo, “Perbandingan Metode Seasonal Arima dan Extreme Learning Machine pada Peramalan Jumlah Wisatawan Mancanegara ke Bali,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 15, no. 4, pp. 639–650, Dec. 2021, doi: 10.30598/BAREKENGVOL15ISS4PP639-650.
[20] A. R. Dimashanti and S. Sugiman, “Peramalan Indeks Harga Konsumen Kota Semarang Menggunakan SARIMA Berbantuan Software Minitab,” PRISMA, Prosiding Seminar Nasional Matematika, vol. 4, pp. 565–576, Feb. 2021.
[21] F. Martinez-Plumed et al., “CRISP-DM Twenty Years Later: From Data Mining Processes to Data Science Trajectories,” IEEE Trans Knowl Data Eng, vol. 33, no. 8, pp. 3048–3061, Aug. 2021, doi: 10.1109/TKDE.2019.2962680.
[22] C. Schröer, F. Kruse, and J. M. Gómez, “A Systematic Literature Review on Applying CRISP-DM Process Model,” Procedia Comput Sci, vol. 181, pp. 526–534, Jan. 2021, doi: 10.1016/J.PROCS.2021.01.199.
[23] F. Ahmad, “Penentuan Metode Peramalan pada Produksi Part New Granada Bowl ST di PT.X,” JISI: Jurnal Integrasi Sistem Industri, vol. 7, no. 1, pp. 31–39, May 2020, doi: 10.24853/JISI.7.1.31-39.
[24] Z. Wu and B. Wang, “An Ensemble Neural Network Based on Variational Mode Decomposition and an Improved Sparrow Search Algorithm for Wind and Solar Power Forecasting,” IEEE Access, vol. 9, pp. 166709–166719, 2021, doi: 10.1109/ACCESS.2021.3136387.
[25] A. Inteha, Nahid-Al-Masood, F. Hussain, and I. A. Khan, “A Data Driven Approach for Day Ahead Short Term Load Forecasting,” IEEE Access, vol. 10, pp. 84227–84243, 2022, doi: 10.1109/ACCESS.2022.3197609.
[26] E. Kristiani, T. Y. Kuo, C. T. Yang, K. C. Pai, C. Y. Huang, and K. L. P. Nguyen, “PM2.5 Forecasting Model Using a Combination of Deep Learning 54 Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri and Statistical Feature Selection,” IEEE Access, vol. 9, pp. 68573–68582, 2021, doi: 10.1109/ACCESS.2021.3077574.
[27] T. Falatouri, F. Darbanian, P. Brandtner, and C. Udokwu, “Predictive Analytics for Demand Forecasting – A Comparison of SARIMA and LSTM in Retail SCM,” Procedia Comput Sci, vol. 200, pp. 993–1003, Jan. 2022, doi: 10.1016/J.PROCS.2022.01.298.
[28] R. Kumar, P. Kumar, and Y. Kumar, “Analysis of Financial Time Series Forecasting using Deep Learning Model,” Proceedings of the Confluence 2021: 11th International Conference on Cloud Computing, Data Science and Engineering, pp. 877–881, Jan. 2021, doi: 10.1109/CONFLUENCE51648.2021.9377158.
[29] M. H. Alsharif, M. K. Younes, and J. Kim, “Time Series ARIMA Model for Prediction of Daily and Monthly Average Global Solar Radiation: The Case Study of Seoul, South Korea,” Symmetry 2019, Vol. 11, Page 240, vol. 11, no. 2, p. 240, Feb. 2019, doi: 10.3390/SYM11020240.
[30] D. A. Agbenyega, J. Andoh, S. Iddi, and L. Asiedu, “Modelling Customs Revenue in Ghana Using Novel Time Series Methods,” Applied Computational Intelligence and Soft Computing, vol. 2022, 2022, doi: 10.1155/2022/2111587.
[31] M. A. Molapo, J. O. Olaomi, and N. O. Ama, “Bayesian Vector AutoRegression Method as an Alternative Technique for Forecasting South African Tax Revenue,” Southern African Business Review, vol. 23, pp. 28 pages-28 pages, Aug. 2019, doi: 10.25159/1998-8125/4416.
[32] E. Buxton, K. Kriz, M. Cremeens, and K. Jay, “An auto regressive deep learning model for sales tax forecasting from multiple short time series,” Proceedings - 18th IEEE International Conference on Machine Learning and Applications, ICMLA 2019, pp. 1359–1364, Dec. 2019, doi: 10.1109/ICMLA.2019.00221.
[33] N. Selle, N. Yudistira, and C. Dewi, “Perbandingan Prediksi Penggunaan Listrik dengan Menggunakan Metode Long Short Term Memory (LSTM) dan Recurrent Neural Network (RNN),” Jurnal Teknologi Informasi dan 55 Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri Ilmu Komputer, vol. 9, no. 1, pp. 155–162, Feb. 2022, doi: 10.25126/JTIIK.2022915585. [34] T. Lattifia, P. W. Buana, and N. K. D. Rusjayanthi, “Model Prediksi Cuaca Menggunakan Metode LSTM,” JITTER?: Jurnal Ilmiah Teknologi dan Komputer; Vol 3 No 1 (2022): Jurnal Jitter Vol. 3, No. 1, April 2022, Mar. 2022.
[35] E. Supriyadi, “Prediksi Parameter Cuaca Menggunakan Deep Learning Long-Short Term Memory (LSTM),” Jurnal Meteorologi dan Geofisika, vol. 21, no. 2, pp. 55–67, Jan. 2021, doi: 10.31172/JMG.V21I2.619.
[36] S. K. Dirjen, P. Riset, D. Pengembangan, R. Dikti, S. Sautomo, and H. Ferdinandus Pardede, “Prediksi Belanja Pemerintah Indonesia Menggunakan Long Short-Term Memory (LSTM),” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 1, pp. 99–106, Feb. 2021, doi: 10.29207/RESTI.V5I1.2815.
[37] P. C. Huy, N. Q. Minh, N. D. Tien, and T. T. Q. Anh, “Short-Term Electricity Load Forecasting Based on Temporal Fusion Transformer Model,” IEEE Access, vol. 10, pp. 106296–106304, 2022, doi: 10.1109/ACCESS.2022.3211941.
[38] E. S. Putri and M. Sadikin, “Prediksi Penjualan Produk Untuk Mengestimasi Kebutuhan Bahan Baku Menggunakan Perbandingan Algoritma LSTM dan ARIMA,” Format?: Jurnal Ilmiah Teknik Informatika, vol. 10, no. 2, pp. 162–171, Aug. 2021, doi: 10.22441/FORMAT.2021.V10.I2.007.
[39] R. M. S. Adi and S. Sudianto, “Prediksi Harga Komoditas Pangan Menggunakan Algoritma Long Short-Term Memory (LSTM),” Building of Informatics, Technology and Science (BITS), vol. 4, no. 2, pp. 1137−1145- 1137−1145, Sep. 2022, doi: 10.47065/BITS.V4I2.2229.
[40] M. F. Rizkilloh and S. Widiyanesti, “Prediksi Harga Cryptocurrency Menggunakan Algoritma Long Short Term Memory (LSTM),” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 1, pp. 25–31, Feb. 2022, doi: 10.29207/RESTI.V6I1.3630. 56 Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri
[41] Kementerian Keuangan, Peraturan Menteri Keuangan Nomor 118/PMK.01/2021 tentang Organisasi dan Tata Kerja Kementerian Keuangan. Jakarta: https://jdih.kemenkeu.go.id, 2021.
Detail Informasi
Tesis ini ditulis oleh :
- Nama : MAHMUD
- NIM : 14210139
- Prodi : Ilmu Komputer
- Kampus : Margonda
- Tahun : 2023
- Periode : I
- Pembimbing : Dr. Windu Gata, M.Kom
- Asisten :
- Kode : 0028.S2.IK.TESIS.I.2023
- Diinput oleh : NZH
- Terakhir update : 11 Juni 2024
- Dilihat : 210 kali
TENTANG PERPUSTAKAAN

E-Library Perpustakaan Universitas Nusa Mandiri merupakan
platform digital yang menyedikan akses informasi di lingkungan kampus Universitas Nusa Mandiri seperti akses koleksi buku, jurnal, e-book dan sebagainya.
INFORMASI
Alamat : Jln. Jatiwaringin Raya No.02 RT08 RW 013 Kelurahan Cipinang Melayu Kecamatan Makassar Jakarta Timur
Email : perpustakaan@nusamandiri.ac.id
Jam Operasional
Senin - Jumat : 08.00 s/d 20.00 WIB
Isitirahat Siang : 12.00 s/d 13.00 WIB
Istirahat Sore : 18.00 s/d 19.00 WIB
Perpustakaan Universitas Nusa Mandiri @ 2020