Lightweight Deep Learning Untuk Intrusion Detection System
- IHUD HAFID
- 14210208
ABSTRAK
ABSTRAK
Nama : Ihud Hafid
NIM : 14210208
Program Studi : Ilmu komputer
Fakultas : Teknologi Informasi
Jenjang : Strata Dua (S2)
Konsentrasi : Data Mining
Judul : “Lightweight Deep Learning Untuk Intrusion Detection System”
Internet of Things (IoT) rentan terhadap berbagai ancaman. Penelitian ini mengembangkan lightweight intrusion detection system untuk meningkatkan keamanan IoT. Lightweight Deep Learning berfokus pada pengembangan model yang dioptimalkan untuk efisiensi dengan menggunakan TensorFlow Lite, sehingga ukuran model yang dihasilkan lebih kecil, dan footprint memori yang lebih rendah. Model ini dirancang agar lebih ramah sumber daya, membuatnya cocok untuk diterapkan pada perangkat dengan sumber daya terbatas seperti edge computing. Berdasarkan hasil Accuracy sebesar 0.95 dan penilaian terhadap hasil Model runtime, Memory usage increase, CPU usage increase, Storage usage increase dan Save model size terbaik didapatkan oleh model Lightweight Artificial Neural Network.
KATA KUNCI
Deep Learning,Lightweight,Internet of things,Edge computing
DAFTAR PUSTAKA
DAFTAR PUSTAKA
[1] Najib Warsun, and Selo Sulistyo. "Tinjauan Ancaman dan Solusi Keamanan pada Teknologi Internet of Things." Jurnal Nasional Teknik Elektro dan Teknologi Informasi 9.4 (2020): 375-384.
[2] Prasetyo, Arief, Luqman Affandi, and Dedi Arpandi. "Implementasi metode naive bayes untuk intrusion detection system (ids)." Jurnal Informatika Polinema 4.4 (2018): 280-280.
[3] SAADI, C., & CHAOUI, H. (2019, April) . Proposed security by IDS-AM in Android system . In 2019 5th International Conference on Optimization and Applications (lCOA) (pp. 1-7). IEEE.
[4] Vilela, D. W., Lotufo, A. D. P., & Santos, C. R. (2018, July). FuzzyARTM AP Neural Network IDS Evaluation applied for real IEEE 802.11 w data base . In 2018 International Joint Conference on Neural Networks (IJCNN) (pp. 1- 7). IEEE.
[5] Mustafa, H., Xu, W., Sadeghi, A. R., & Schulz, S. (2016) . End-to-end detection of caller ID spoofing attack s. IEEE Transactions on Dependable and Secure Computing, 15(3),423-436.
[6] Satria , D., & Ahmadian, H. (2018) . Designing Home Security Monitoring System Based Internet of Things (loTs) Model. Jurnal Serambi Engineering, 3(1).
[7] Tong, Z., & Ying, H. (2018, June) . Application of frequent item set mining algorithm in IDS based on Hadoop framework. In 2018 Chinese Control And Decision Conference (CCDC) (pp. 1908-1911). IEEE .
[8] Shunnan, M. M., Khrais, R. M., & Yateem, A. A. (2019, December). loT Denial-of-Service Attack Detection and Prevention Using Hybrid IDS. In 2019 International Arab Conference on Information Technology (ACIT) (pp. 252-254) . IEEE .
[9] Alrashdi, I., Alqa zzaz, A., Aloufi, E., Alharthi, R., Zohdy, M., & Ming , H. (2019 , January). AD-loT: anomaly detect ion of loT cyberattacks in smart city using machine learning. In 2019 IEEE 9th Annual Computing and Communication Work shop and Conference (CCWC) (pp. 0305-0310). IEEE. 45 46 Program Studi Komputer (S2) Universitas Nusa Mandiri
[10] Mishra, A., & Dixit, A. (2018 , July). Resolving threats in iot: Id spoofing to ddos. In 2018 9Th international conference on computing,communication and networking technologies (lCCCNT) (pp. 1-7).IEEE .
[11] Bakhtiar, F. A., Pramukantoro, E. S., & Nihri , H. (2019, March). A Lightweight IDS Based on J48 Algorithm for Detecting DoS Attacks on loT Middleware. In 2019 IEEE 1st Global Conference on Life Sciences and Technologies (LifeTech) (pp. 41-42). IEEE.
[12] Ferrag, M. A., Maglaras, L., Moschoyiannis, S., & Janicke, H. (2020) . Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study . Journal of Information Security and Appl ications, 50,102419.
[13] Hyunjae Kang, Dong Hyun Ahn, Gyung Min Lee, Jeong Do Yoo, Kyung Ho Park, and Huy Kang Kim, "loT Network Intrusion Dataset.", http ://ocslab.hksecurity.net/Datasets/iot-network-intrusion-dataset, 2019.
[14] Sherasiya, T., Upadhyay, H., Patel, H.B. (2016). Asurvey: Intrusion detection system for Internet of Things.International Journal of Computer Science andEngineering (IJCSE), 5(2): 91-98.
[15] Zarpelão, B.B., Miani, R.S., de Alvarenga, S.C. (2017).A survey of intrusion detection in Internet of Things.Journal of Network and Computer Applications, 84(C):25-37. http://dx.doi.org/10.1016/j.jnca.2017.02.009.
[16] Alrajeh, N.A., Khan, S., Shams, B. (2013). Intrusiondetection systems in wireless sensor networks: A review.International Journal of Distributed Sensor Networks,2013: 7 pages. https://doi.org/10.1155/2013/167575
[17] Fenanir, S., Semchedine, F., Baadache, A. (2019). A machine learning-based lightweight intrusion detection system for the internet of things. Revue d'Intelligence Artificielle, Vol. 33, No. 3, pp. 203-211. https://doi.org/10.18280/ria.
[18] Pristyanto, Yoga. (2019). PENERAPAN METODE ENSEMBLE UNTUK MENINGKATKAN KINERJA ALGORITME KLASIFIKASI PADA IMBALANCED DATASET. Jurnal Teknoinfo. 13. 11. 10.33365/jti.v13i1.184. 47 Program Studi Komputer (S2) Universitas Nusa Mandiri
[19] Ardiansyah, Dian. "Algoritma C4.5 Untuk Klasifikasi Calon Peserta Lomba Cerdas Cermat Siswa SMP Dengan Menggunakan Aplikasi Rapid Miner." Jurnal Inkofar, vol. 1, no. 2, 2018.
[20] Jeatrakul, P., K.W. Wong, and C.C. Fung. “Using Misclassification Analysis for Data Cleaning.” Murdoch University, 2009. Web.
[21] Hancock, John & Khoshgoftaar, Taghi. (2020). Survey on categorical data for neural networks. Journal of Big Data. 7. 10.1186/s40537-020-00305-w.
[22] T.D.K., Thara & Sudha B G, Prema & Xiong, Fan. (2019). Auto-detection of Epileptic Seizure events using deep neural network with different feature scaling techniques. Pattern Recognition Letters. 128. 10.1016/j.patrec.2019.10.029.
[23] Yadigar Imamverdiyev, Lyudmila Sukhostat, Lithological facies classification using deep convolutional neural network, Journal of Petroleum Science and Engineering,Volume 174, 2019,Pages 216-228, ISSN 0920- 4105, https://doi.org/10.1016/j.petrol.2018.11.023.
[24] Fissha, Y.; Ikeda, H.; Toriya, H.; Adachi, T.; Kawamura, Y. Application of Bayesian Neural Network (BNN) for the Prediction of Blast-Induced Ground Vibration. Appl. Sci. 2023, 13, 3128. https://doi.org/10.3390/app13053128.
[25] A. Nurdin, B. A. S. Aji, A. Bustamin and Z. Abidin, “PERBANDINGAN KINERJA WORD EMBEDDING WORD2VEC, GLOVE, DAN FASTTEXT PADA KLASIFIKASI TEKS,” Jurnal TEKNOKOMPAK, vol. 14, no. 2, pp. 74--79, 2020
[26] David, R., Duke, J., Jain, A., Reddi, V.J., Jeffries, N., Li, J., Kreeger, N., Nappier, I.A., Natraj, M., Regev, S., Rhodes, R., Wang, T., & Warden, P. (2020). TensorFlow Lite Micro: Embedded Machine Learning on TinyML Systems. ArXiv, abs/2010.08678.
[27] Tino, Muhammad & Hasanah, Herliyani & Santosa, Tri. (2023). PERBANDINGAN ALGORITMA SUPPORT VECTOR MACHINES (SVM) DAN NEURAL NETWORK UNTUK KLASIFIKASI PENYAKIT JANTUNG. INFOTECH journal. 9. 232-235. 10.31949/infotech.v9i1.5432.
[28] A. Ainurrohmah, “Akurasi Algoritma Klasifikasi Pada Software Rapidminer dan Weka”, prisma, vol. 4, pp. 493-499, Feb. 2021. 48 Program Studi Komputer (S2) Universitas Nusa Mandiri
[29] Malik, Kainat, Faisal Rehman, Tahir Maqsood, Saad Mustafa, Osman Khalid, and Adnan Akhunzada. 2022. "Lightweight Internet of Things Botnet Detection Using One-Class Classification" Sensors 22, no. 10: 3646. https://doi.org/10.3390/s22103646.
[30] I. Ullah and Q. H. Mahmoud, "Design and Development of a Deep LearningBased Model for Anomaly Detection in IoT Networks," in IEEE Access, vol. 9, pp. 103906-103926, 2021, doi: 10.1109/ACCESS.2021.3094024.
[31] Z. Liu, N. Thapa, A. Shaver, K. Roy, X. Yuan and S. Khorsandroo, "Anomaly Detection on IoT Network Intrusion Using Machine Learning," 2020 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD), Durban, South Africa, 2020, pp. 1- 5, doi: 10.1109/icABCD49160.2020.9183842.
[32] Albulayhi K, Abu Al-Haija Q, Alsuhibany SA, Jillepalli AA, Ashrafuzzaman M, Sheldon FT. “IoT Intrusion Detection Using Machine Learning with a Novel High Performing Feature Selection Method”. Applied Sciences. 2022; 12(10):5015. https://doi.org/10.3390/app12105015.
[33] Hou Y, He R, Dong J, Yang Y, Ma W. IoT Anomaly Detection Based on Autoencoder and Bayesian Gaussian Mixture Model. Electronics. 2022; 11(20):3287. https://doi.org/10.3390/electronics11203287.
[34] Ullah S, Ahmad J, Khan MA, Alkhammash EH, Hadjouni M, Ghadi YY, Saeed F, Pitropakis N. “A New Intrusion Detection System for the Internet of Things via Deep Convolutional Neural Network and Feature Engineering”. Sensors. 2022; 22(10):3607. https://doi.org/10.3390/s22103607.
Detail Informasi
Tesis ini ditulis oleh :
- Nama : IHUD HAFID
- NIM : 14210208
- Prodi : Ilmu Komputer
- Kampus : Margonda
- Tahun : 2023
- Periode : I
- Pembimbing : Dr. Agus Subekti, MT
- Asisten :
- Kode : 0020.S2.IK.TESIS.I.2023
- Diinput oleh : NZH
- Terakhir update : 11 Juni 2024
- Dilihat : 95 kali
TENTANG PERPUSTAKAAN

E-Library Perpustakaan Universitas Nusa Mandiri merupakan
platform digital yang menyedikan akses informasi di lingkungan kampus Universitas Nusa Mandiri seperti akses koleksi buku, jurnal, e-book dan sebagainya.
INFORMASI
Alamat : Jln. Jatiwaringin Raya No.02 RT08 RW 013 Kelurahan Cipinang Melayu Kecamatan Makassar Jakarta Timur
Email : perpustakaan@nusamandiri.ac.id
Jam Operasional
Senin - Jumat : 08.00 s/d 20.00 WIB
Isitirahat Siang : 12.00 s/d 13.00 WIB
Istirahat Sore : 18.00 s/d 19.00 WIB
Perpustakaan Universitas Nusa Mandiri @ 2020