Prediksi Time Effort Pengembangan Perangkat Lunak Agile menggunakan Teknik Machine Learning
- MUCHAMAD BACHRAM SHIDIQ
- 14210136
ABSTRAK
ABSTRAK
Nama : Muchamad Bachram Shidiq
NIM : 14210136
Program Studi : Ilmu Komputer
Fakultas : Teknologi Informasi
Jenjang : Strata Dua (S2)
Konsentrasi : Software Engineering
Judul : “Prediksi Time Effort Pengembangan Perangkat Lunak Agile menggunakan Teknik Machine Learning”
Dalam rangka menjalankan proyek pengembangan perangkat lunak, diperlukan mekanisme pengelolaan atau manajemen proyek yang efektif dan efisien untuk mengkoordinasikan kegiatan yang dilakukan. Metode agile dikembangkan karena terdapat beberapa kelemahan pada metode klasik yang dapat mengganggu jalannya proses pengembangan perangkat lunak sesuai keinginan pengguna. Namun dalam penerapan metode agile, belum dapat dilakukan time effort estimation dengan baik. Hal ini dapat menyebabkan project manager kesulitan menyiapkan sumber daya dalam pengembangan perangkat lunak pada scrum project. Planning poker sebagai salah satu metode populer untuk effort estimation agile-scrum project, namun planning poker memiliki kerentanan terhadap masalah bias, dinamika tim, dan boros waktu. Untuk itu penelitian ini bertujuan melakukan prediksi time effort pengembangan perangkat lunak agile menggunakan teknik Machine Learning yaitu algoritma Decision Tree, Random Forest, Gradient Boosting, dan AdaBoost, serta penggunaan feature selection berupa RRelieff dan Principal Component Analysis (PCA) untuk peningkatan akurasi prediksi.
KATA KUNCI
Agile,machine learning,Decision Tree,Random Forest,Gradient Boosting
DAFTAR PUSTAKA
DAFTAR REFERENSI
[1] P. R. Indonesia, Peraturan Presiden Republik Indonesia Nomor 28 Tahun 2015. 2015.
[2] “Presidential Regulation No. 95 of 2018 concerning Electronic-Based Government Systems,” vol. 1, pp. 1–32, 2018.
[3] L. M. Applegate, R. D. (Robert D. Austin, F. W. (Franklin W. McFarlan, and L. M. Applegate, Corporate information strategy and management : the challenges of managing in a network economy. 2003.
[4] K. Scwalbe, An Introduction to Project Management, vol. 38, no. 4. 2015.
[5] Kementerian Keuangan RI, “Peraturan Menteri Keuangan Republik Indonesia Nomor 118/PMK.01/2021 tentang Organisasi dan Tata Kerja Kementerian Keuangan,” Ber. Negara Republik Indones. Tahun 2021 Nomor 1862, no. 8 September 2021, pp. 1–989, 2021, [Online]. Available: https://jdih.kemenkeu.go.id/download/a659847a-95b2-40b0-9da4-6972f9a 151b1/118~PMK.010~2021Per.pdf.
[6] V. Mahnic and S. Drnovscek, “Agile software project management with scrum,” EUNIS 2005 Conf. Pap. Tutor. Abstr., no. January 2005, p. 6, 2005, [Online]. Available: fri.uni-lj.si.
[7] M. Usman, E. Mendes, and J. Börstler, “Effort estimation in Agile software development: A survey on the state of the practice,” ACM Int. Conf. Proceeding Ser., vol. 27-29-Apri, 2015, doi: 10.1145/2745802.2745813.
[8] A. Trendowicz and R. Jeffery, Software project effort estimation: Foundations and best practice guidelines for success. 2014.
[9] P. D. Roger S. Pressman, Software Engineering: a Practitioner’s Approach, vol. 10, no. 6. 2001.
[10] M. Fernández-Diego, E. R. Méndez, F. González-Ladrón-De-Guevara, S. Abrahão, and E. Insfran, “An update on effort estimation in agile software development: A systematic literature review,” IEEE Access, vol. 8, pp. 166768–166800, 2020, doi: 10.1109/ACCESS.2020.3021664.
[11] F. Castillo, “Managing information technology,” Manag. Inf. Technol., pp. Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri 97 1–241, 2016, doi: 10.1007/978-3-319-38891-5.
[12] L. Benedicenti, P. Ciancarini, F. Cotugno, A. Messina, A. Sillitti, and G. Succi, “Improved Agile: A Customized Scrum Process for Project Management in Defense and Security,” pp. 289–314, 2017, doi: 10.1007/978-3-319-54325-3_12.
[13] P. Hohl et al., “Back to the future: origins and directions of the ‘Agile Manifesto’ – views of the originators,” J. Softw. Eng. Res. Dev., vol. 6, no. 1, 2018, doi: 10.1186/s40411-018-0059-z.
[14] E. L. Cano, J. M. García-Camús, J. Garzás, J. M. Moguerza, and N. N. Sánchez, “A Scrum-based framework for new product development in the non-software industry,” J. Eng. Technol. Manag. - JET-M, vol. 61, no. June, 2021, doi: 10.1016/j.jengtecman.2021.101634.
[15] K. Schwaber and J. Sutherland, “Scrum Guide V7,” Agil. Metrics Agil. Heal. Metrics Predict., no. November, pp. 133–152, 2020.
[16] W. Hayes, S. Miller, M. A. Lapham, E. Wrubel, and T. Chick, “Agile Metrics: Progress Monitoring of Agile Contractors. CMU/SEI-2013-TN-029,” no. January, p. 58, 2014.
[17] E. S. Hidalgo, “Adapting the scrum framework for agile project management in science: case study of a distributed research initiative,” Heliyon, vol. 5, no. 3, p. e01447, 2019, doi: 10.1016/j.heliyon.2019.e01447.
[18] 6 Metode Pengembangan Perangkat Lunak Paling Populer, “6 Metode Pengembangan Perangkat Lunak Paling Populer,” 2023. https://badoystudio.com/metode-pengembangan-perangkat-lunak/ (accessed Jul. 09, 2023).
[19] S. M. Satapathy, “Effort Estimation Methods in Software Development,” pp. 1–172, 2016.
[20] E. Rodríguez Sánchez, E. F. Vázquez Santacruz, and H. Cervantes Maceda, “Effort and Cost Estimation Using Decision Tree Techniques and Story Points in Agile Software Development,” Mathematics, vol. 11, no. 6, 2023, doi: 10.3390/math11061477.
[21] Y. Z. Sicco Verwer, “Learning Decision Trees with Flexible Constraints Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri 98 and Objectives Using Integer Optimization,” Springer Int. Publ. AG 2017, vol. 2, no. Nips, pp. 94–103, 2017, doi: 10.1007/978-3-319-59776-8.
[22] A. Zakrani, M. Hain, and A. Namir, “Software development effort estimation using random forests: An empirical study and evaluation,” Int. J. Intell. Eng. Syst., vol. 11, no. 6, pp. 300–311, 2018, doi: 10.22266/IJIES2018.1231.30.
[23] A. Zakrani, M. Hain, and A. Idri, “Improving software development effort estimation using support vector regression and feature selection,” IAES Int. J. Artif. Intell., vol. 8, no. 4, pp. 399–410, 2019, doi: 10.11591/ijai.v8.i4.pp399-410.
[24] K. Matsuki, V. Kuperman, and J. A. Van Dyke, “The Random Forests statistical technique: An examination of its value for the study of reading,” Sci. Stud. Read., vol. 20, no. 1, pp. 20–33, 2016, doi: 10.1080/10888438.2015.1107073.
[25] A. B. Nassif, L. F. Capretz, and D. Ho, “Estimating software effort using an ANN model based on use case points,” Proc. - 2012 11th Int. Conf. Mach. Learn. Appl. ICMLA 2012, vol. 2, no. 2, pp. 42–47, 2012, doi: 10.1109/ICMLA.2012.138.
[26] P. Bahad and P. Saxena, “Study of AdaBoost and Gradient Boosting Algorithms for Predictive Analytics,” pp. 235–244, 2020, doi: 10.1007/978-981-15-0633-8_22.
[27] S. M. Satapathy and S. K. Rath, “Empirical assessment of machine learning models for agile software development effort estimation using story points,” Innov. Syst. Softw. Eng., vol. 13, no. 2–3, pp. 191–200, 2017, doi: 10.1007/s11334-017-0288-z.
[28] A. Kumar, “Gradient Boosting Algorithm: Concepts, Example,” 2022. .
[29] A. Rovetta, “Raiders of the Lost Correlation: A Guide on Using Pearson and Spearman Coefficients to Detect Hidden Correlations in Medical Sciences,” Cureus, vol. 12, no. 11, 2020, doi: 10.7759/cureus.11794.
[30] P. Schober and L. A. Schwarte, “Correlation coefficients: Appropriate use and interpretation,” Anesth. Analg., vol. 126, no. 5, pp. 1763–1768, 2018, doi: 10.1213/ANE.0000000000002864. Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri 99
[31] J. Miao and L. Niu, “A Survey on Feature Selection,” Procedia Comput. Sci., vol. 91, no. Itqm, pp. 919–926, 2016, doi: 10.1016/j.procs.2016.07.111.
[32] K. Kira and L. Rendell, “kira - A practical approach to feature selection - 1992.pdf,” The Ninth International Conference on Machine Learning. pp. 249–256, 1992.
[33] M. ROBNIK SIKONJA MarkoRobnik and friuni-ljsi IGOR KONONENKO IgorKononenko, “Theoretical and Empirical Analysis of ReliefF and RReliefF,” Mach. Learn., vol. 53, pp. 23–69, 2003, [Online]. Available: http://lkm.fri.uni-lj.si/xaigor/slo/clanki/MLJ2003-FinalPaper.pdf.
[34] R. J. Urbanowicz, M. Meeker, W. La Cava, R. S. Olson, and J. H. Moore, “Relief-based feature selection: Introduction and review,” J. Biomed. Inform., vol. 85, pp. 189–203, 2018, doi: 10.1016/j.jbi.2018.07.014.
[35] Mathworks, “Feature Selection and Feature Transformation Using Regression Learner App,” 2023. https://de.mathworks.com/help/stats/feature-selection-and-feature-transfor mation-using-regression-learner-app.html (accessed Jul. 01, 2023).
[36] B. M. Khammas, A. Monemi, J. S. Bassi, I. Ismail, S. M. Nor, and M. N. Marsono, “Feature selection and machine learning classification for malware detection,” J. Teknol., vol. 77, no. 1, pp. 243–250, 2015, doi: 10.11113/jt.v77.3558.
[37] I. T. Jollife and J. Cadima, “Principal component analysis: A review and recent developments,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 374, no. 2065, 2016, doi: 10.1098/rsta.2015.0202.
[38] A. A. Ali Bou Nassif, Mohammad Azzeh, Ali Idri, “Software Development Effort Estimation Using Regression Fuzzy Models,” Comput. Intell. Neurosci., 2019, doi: 10.1109/9780471683179.ch11.
[39] D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,” PeerJ Comput. Sci., vol. 7, pp. 1–24, 2021, doi: 10.7717/PEERJ-CS.623. Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri 100
[40] Y. Astuti, I. R. Wulandari, A. R. Putra, and N. Kharomadhona, “Naïve Bayes untuk Prediksi Tingkat Pemahaman Kuliah Online Terhadap Mata Kuliah Algoritma Struktur Data,” J. Edukasi dan Penelit. Inform., vol. 8, no. 1, pp. 28–32, 2022, [Online]. Available: https://www.researchgate.net/publication/361094718.
[41] L. Mardiana, D. Kusnandar, and N. Satyahadewi, “Analisis Diskriminan Dengan K Fold Cross Validation Untuk Klasifikasi Kualitas Air Di Kota Pontianak,” Bimaster Bul. Ilm. Mat. Stat. dan Ter., vol. 11, no. 1, pp. 97–102, 2022, [Online]. Available: https://jurnal.untan.ac.id/index.php/jbmstr/article/view/51608.
[42] C. Schröer, F. Kruse, and J. M. Gómez, “A systematic literature review on applying CRISP-DM process model,” Procedia Comput. Sci., vol. 181, no. 2019, pp. 526–534, 2021, doi: 10.1016/j.procs.2021.01.199.
[43] S. Bahri, “Implementasi Data Mining Untuk Memprediksi Keterlambatan Jam Masuk Kerja Menggunakan Algoritma Klasifikasi,” Sist. Inf., vol. 1, no. 1, pp. 11–20, 2020.
[44] M. Gultekin and O. Kalipsiz, “Story Point-Based Effort Estimation Model with Machine Learning Techniques,” Int. J. Softw. Eng. Knowl. Eng., vol. 30, no. 1, pp. 43–66, 2020, doi: 10.1142/S0218194020500035.
[45] A. Panda, S. M. Satapathy, and S. K. Rath, “Empirical Validation of Neural Network Models for Agile Software Effort Estimation based on Story Points,” Procedia Comput. Sci., vol. 57, pp. 772–781, 2015, doi: 10.1016/j.procs.2015.07.474.
[46] C. Prasada Rao, P. Siva Kumar, S. Rama Sree, and J. Devi, An agile effort estimation based on story points using machine learning techniques, vol. 712. Springer Singapore, 2018.
[47] A. Sharma and N. Chaudhary, “Linear Regression Model for Agile Software Development Effort Estimation,” 2020 5th IEEE Int. Conf. Recent Adv. Innov. Eng. ICRAIE 2020 - Proceeding, vol. 2020, pp. 4–7, 2020, doi: 10.1109/ICRAIE51050.2020.9358309.
[48] A. Sharma and N. Chaudhary, “Analysis of Software Effort Estimation Based on Story Point and Lines of Code using Machine Learning,” Int. J. Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri 101 Comput. Digit. Syst., vol. 12, no. 1, pp. 131–140, 2022, doi: 10.12785/ijcds/120112.
[49] T. T. Khuat and M. H. Le, “A Novel Hybrid ABC-PSO Algorithm for Effort Estimation of Software Projects Using Agile Methodologies,” J. Intell. Syst., vol. 27, no. 3, pp. 489–506, 2018, doi: 10.1515/jisys-2016-0294.
[50] Garg, “PCA based cost estimation model for agile software development projects,” 2015 International Conference on Industrial Engineering and Operations Management.
[51] Simone Porru, Alessandro Murgia, Serge Demeyer, Michele Marchesi, and Roberto Tonelli, “Estimating Story Points from Issue Reports” 2016 PROMISE 2016 doi: http://dx.doi.org/10.1145/2972958.2972959.
[52] Abdelali Zakrani, Assia Najm, and Abdelaziz Marzak, “Support Vector Regression Based on Grid-Search Method for Agile Software Effort Prediction” IEEE 2018 978-1-5386-4385-3
[53] Shashank Mouli Satapathy, Aditi Panda, and Santanu Kumar Rath, “Story Point Approach based Agile Software Effort Estimation using Various SVR Kernel Methods” 2014
[54] Kumar, Deepak, “Random Forest Hyperparameters Tuning for Software Development Effort Estimation and its Comparison with Regression Tree” 2019
[55] Thanh Tung Khuat, My Hanh Le, “An Effort Estimation Approach for Agile Software Development using Fireworks Algorithm Optimized Neural Network” 2016 International Journal of Computer Science and Information Security (IJCSIS) Vol 14, No 7, July 2016 ISSN 1947-5500
Detail Informasi
Tesis ini ditulis oleh :
- Nama : MUCHAMAD BACHRAM SHIDIQ
- NIM : 14210136
- Prodi : Ilmu Komputer
- Kampus : Margonda
- Tahun : 2023
- Periode : I
- Pembimbing : Dr. Windu Gata, M.Kom
- Asisten :
- Kode : 0019.S2.IK.TESIS.I.2023
- Diinput oleh : NZH
- Terakhir update : 10 Juni 2024
- Dilihat : 118 kali
TENTANG PERPUSTAKAAN

E-Library Perpustakaan Universitas Nusa Mandiri merupakan
platform digital yang menyedikan akses informasi di lingkungan kampus Universitas Nusa Mandiri seperti akses koleksi buku, jurnal, e-book dan sebagainya.
INFORMASI
Alamat : Jln. Jatiwaringin Raya No.02 RT08 RW 013 Kelurahan Cipinang Melayu Kecamatan Makassar Jakarta Timur
Email : perpustakaan@nusamandiri.ac.id
Jam Operasional
Senin - Jumat : 08.00 s/d 20.00 WIB
Isitirahat Siang : 12.00 s/d 13.00 WIB
Istirahat Sore : 18.00 s/d 19.00 WIB
Perpustakaan Universitas Nusa Mandiri @ 2020