Deteksi Tingkat Keparahan Cyberbullying dengan Model Pendekatan Machine Learning Multi Kelas

  • ARIF RAHMAN HAKIM
  • 14210167

ABSTRAK

ABSTRAK

Nama              : Arif Rahman Hakim

NIM                 : 14210167

Program Studi : Ilmu Komputer (S2)

Fakultas          : Teknologi Informasi

Jenjang           : Strata Dua (S2)

Konsentrasi     : Data Mining

Judul            : “Deteksi Tingkat Keparahan Cyberbullying dengan Model Pendekatan Machine Learning Multi Kelas”

Cyberbullying adalah tindakan yang disengaja dan berulang yang dilakukan oleh individu atau kelompok dengan maksud untuk menyakiti seseorang melalui media sosial. Meskipun tindakan Cyberbullying terjadi tanpa kekerasan fisik, tetap akan merugikan korban. Korban Cyberbullying dapat mengalami kelelahan mental, depresi, gangguan kecemasan hingga mengakhiri hidup atau bunuh diri. Dengan memanfaatkan algoritma machine learning, penelitian ini bertujuan untuk mendeteksi sebuah teks pada platform media sosial dan mengklasifikasikannya ke dalam kategori cyberbullying atau non-cyberbullying, serta mengetahui tingkat keparahannya. Metode penelitian yang dilakukan terdiri dari beberapa tahapan, seperti pengumpulan data, tahapan pre-processing atau pengolahan data awal, ekstraksi fitur, generalisasi fitur, seleksi fitur, model klasifikasi, dan evaluasi. Hasil menunjukkan bahwa model klasifikasi dengan menggunakan algoritma Random Forest memiliki akurasi sebesar 90,46%, SVM sebesar 90,30%, dan Decision Tree sebesar 88,62%. Selain itu, penelitian ini juga berhasil menciptakan leksikon cyberbullying dengan metode PMI-SO

KATA KUNCI

Twitter,Cyberbullying,SVM,Decision Tree,Random Forest


DAFTAR PUSTAKA

DAFTAR PUSTAKA

[1] P. H. Untari, “Alami Cyber Bullying, Artis TikTok Siya Kakkar Bunuh Diri di Usia 17 Tahun,” 2020. https://celebrity.okezone.com/read/2020/06/28/33/2237726/alami-cyberbullying-artis-tiktok-siya-kakkar-bunuh-diri-di-usia-17-tahun

[2] M. H. Syah, “Mensos: Bunuh Diri Anak Indonesia 40 Persen karena Bullying,” 2015. https://www.liputan6.com/news/read/2361551/mensosbunuh-diri-anak-indonesia-40-persen-karena-bullying

[3] J. Penni, “The future of online social networks (OSN): A measurement analysis using social media tools and application,” Telemat. Informatics, vol. 34, no. 5, pp. 498–517, 2017, doi: 10.1016/j.tele.2016.10.009.

[4] O. Dorol--Beauroy-Eustache and B. L. Mishara, “Systematic review of risk and protective factors for suicidal and self-harm behaviors among children and adolescents involved with cyberbullying,” Prev. Med. (Baltim)., vol. 152, no. P1, p. 106684, 2021, doi: 10.1016/j.ypmed.2021.106684.

[5] B. A. Talpur and D. O’Sullivan, “Cyberbullying severity detection: A machine learning approach,” PLoS One, vol. 15, no. 10 October, pp. 1–19, 2020, doi: 10.1371/journal.pone.0240924.

[6] M. Rezvan, K. Thirunarayan, S. Shekarpour, V. L. Shalin, L. Balasuriya, and A. Sheth, “A quality type-aware annotated corpus and lexicon for harassment research,” WebSci 2018 - Proc. 10th ACM Conf. Web Sci., pp. 33–36, 2018, doi: 10.1145/3201064.3201103.

[7] S. Agrawal and A. Awekar, “Deep Learning for Detecting Cyberbullying Across Multiple Social Media Platforms,” Springer Int. Publ., vol. 10772 LNCS, pp. 141–153, 2018, doi: 10.1007/978-3-319-76941-7_11.

[8] C. Iwendi, G. Srivastava, S. Khan, and P. K. R. Maddikunta, “Cyberbullying detection solutions based on deep learning architectures,” Multimed. Syst., 2020, doi: 10.1007/s00530-020-00701-5.

[9] M.-S. Chen, J. Han, and P. S. Yu, “Data mining: an overview from a database perspective,” IEEE Trans. Knowl. Data Eng., vol. 8, no. 6, pp. 866–883, 1996.

[10] W. J. Frawley, G. Piatetsky-Shapiro, and C. J. Matheus, “Knowledge 42 Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri discovery in databases: An overview,” AI Mag., vol. 13, no. 3, p. 57, 1992.

[11] R. Feldman and I. Dagan, “Knowledge Discovery in Textual Databases (KDT).,” in KDD, 1995, pp. 112–117.

[12] Richard Lawson, Web Scraping with Python. 2015.

[13] A. Hernandez-Suarez, G. Sanchez-Perez, K. Toscano-Medina, V. MartinezHernandez, V. Sanchez, and H. Perez-Meana, “A web scraping methodology for bypassing twitter API restrictions,” arXiv Prepr. arXiv1803.09875, 2018.

[14] M. Lamba and M. Madhusudhan, “Text Pre-Processing,” Text Min. Inf. Prof., pp. 79–103, 2022, doi: 10.1007/978-3-030-85085-2_3.

[15] I. D. P. Wijana, “the Use of English in Indonesian Adolescent’S Slang,” Humaniora, vol. 24, no. 3, pp. 315–323, 2012.

[16] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3, pp. 130–137, 1980.

[17] M. Raharjo, “Analisis Sentiment Twitter Terkait Kondisi Social Distancing Di Indonesia Dengan Model Voting Ensemble,” 2021.

[18] W. J. Wilbur and K. Sirotkin, “The automatic identification of stop words,” J. Inf. Sci., vol. 18, no. 1, pp. 45–55, 1992.

[19] G. Gupta, “Text Document Tokenization for Word Frequency Count using Rapid Miner (Taking Resume as an Example),” Int. J. Comput. Appl., no. Icaet, pp. 975–8887, 2015, [Online]. Available: www.ijcaonline.org

[20] H. Schütze, C. D. Manning, and P. Raghavan, Introduction to information retrieval, vol. 39. Cambridge University Press Cambridge, 2008.

[21] M. Adriani and R. Manurung, “A survey of bahasa Indonesia NLP research conducted at the University of Indonesia,” in Proceedings of the 2nd International MALINDO Workshop, 2008, pp. 12–13.

[22] T. Brants, “TnT-a statistical part-of-speech tagger,” arXiv Prepr. cs/0003055, 2000.

[23] J. Kieffer, “Elements of information theory (thomas m. Cover and joy a. Thomas),” SIAM Rev., vol. 36, no. 3, pp. 509–511, 1994.

[24] K. Church and P. Hanks, “Word association norms, mutual information, and lexicography,” Comput. Linguist., vol. 16, no. 1, pp. 22–29, 1990.

[25] P. D. Turney, “Thumbs up or thumbs down? Semantic orientation applied to 43 Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri unsupervised classification of reviews,” arXiv Prepr. cs/0212032, 2002.

[26] P. K. Pattnaik, S. S. Rautaray, H. Das, and J. Nayak, “Progress in computing, analytics and networking,” Proc. ICCAN, vol. 710, 2017.

[27] R. Mehta, Big Data Analytics with Java. Packt Publishing Ltd, 2017.

[28] L. Tuggener et al., “Automated machine learning in practice: state of the art and recent results,” in 2019 6th Swiss Conference on Data Science (SDS), 2019, pp. 31–36.

[29] T. Joachims, “Text categorization with support vector machines: Learning with many relevant features,” in European conference on machine learning, 1998, pp. 137–142.

[30] M. L. Ybarra and K. J. Mitchell, “Prevalence and frequency of Internet harassment instigation: Implications for adolescent health,” J. Adolesc. Heal., vol. 41, no. 2, pp. 189–195, 2007.

[31] S. L. Salzberg, “C4. 5: Programs for machine learning by j. ross quinlan. morgan kaufmann publishers, inc., 1993.” Kluwer Academic Publishers, 1994.

[32] A. M. Hormann, “Programs for machine learning. Part II,” Inf. Control, vol. 7, no. 1, pp. 55–77, 1964, doi: 10.1016/S0019-9958(64)90259-1.

[33] M. Awad and R. Khanna, Efficient learning machines: theories, concepts, and applications for engineers and system designers. Springer nature, 2015.

[34] J. Salminen, M. Hopf, S. A. Chowdhury, S. Jung, H. Almerekhi, and B. J. Jansen, “Developing an online hate classifier for multiple social media platforms,” Human-centric Comput. Inf. Sci., vol. 10, pp. 1–34, 2020.

[35] R. Blagus and L. Lusa, “SMOTE for high-dimensional class-imbalanced data,” BMC Bioinformatics, vol. 14, no. 1, pp. 1–16, 2013.

[36] N. V Chawla, D. A. Cieslak, L. O. Hall, and A. Joshi, “Automatically countering imbalance and its empirical relationship to cost,” Data Min. Knowl. Discov., vol. 17, no. 2, pp. 225–252, 2008.

[37] A. Muneer and S. M. Fati, “A comparative analysis of machine learning techniques for cyberbullying detection on twitter,” Futur. Internet, vol. 12, no. 11, pp. 1–21, 2020, doi: 10.3390/fi12110187.

[38] S. A. Hemphill et al., “Longitudinal predictors of cyber and traditional 44 Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri bullying perpetration in Australian secondary school students,” J. Adolesc. Heal., vol. 51, no. 1, pp. 59–65, 2012.

[39] V. Balakrishnan, S. Khan, and H. R. Arabnia, “Improving cyberbullying detection using Twitter users’ psychological features and machine learning,” Comput. Secur., vol. 90, p. 101710, 2020, doi: 10.1016/j.cose.2019.101710.

[40] K. Siddhartha, K. R. Kumar, K. J. Varma, M. Amogh, and M. Samson, “Cyber Bullying Detection Using Machine Learning,” 2022 2nd Asian Conf. Innov. Technol. ASIANCON 2022, pp. 45–50, 2022, doi: 10.1109/ASIANCON55314.2022.9909201.

[41] G. Balamurugan and J. Jayabharathy, “Cyberbully Classification Based on Tweet Texts for Detection of Phishing Links,” in Smart Data Intelligence: Proceedings of ICSMDI 2022, Springer, 2022, pp. 367–374.

[42] H. Dani, J. Li, and H. Liu, “Sentiment Informed Cyberbullying Detection in Social Media,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 10534 LNAI, pp. 52–67, 2017, doi: 10.1007/978-3-319-71249-9_4.

[43] E. Raisi and B. Huang, “Cyberbullying detection with weakly supervised machine learning,” Proc. 2017 IEEE/ACM Int. Conf. Adv. Soc. Networks Anal. Mining, ASONAM 2017, pp. 409–416, 2017, doi: 10.1145/3110025.3110049.

[44] R. M. H. Nurnaryo, M. Mulaab, I. O. Suzanti, D. A. Fatah, A. D. Cahyani, and F. A. Mufarroha, “Deteksi Cyberbullying Pada Data Tweet Menggunakan Metode Random Forest Dan Seleksi Fitur Information Gain,” J. Simantec, vol. 11, no. 1, pp. 33–40, 2022.

[45] N. Abdulloh and A. F. Hidayatullah, “Deteksi Cyberbullying pada Cuitan Media Sosial Twitter,” AUTOMATA, vol. 1, no. 1, 2020.

[46] N. F. Hasan and V. Wati, “Deteksi Cyberbullying pada Facebook Menggunakan Algoritma K-Nearest Neighbor,” J. Smart Syst., vol. 1, no. 1, pp. 35–44, 2021.

[47] M. O. Ibrohim and I. Budi, “A Dataset and Preliminaries Study for Abusive Language Detection in Indonesian Social Media,” Procedia Comput. Sci., vol. 135, pp. 222–229, 2018, doi: 10.1016/j.procs.2018.08.169.

Detail Informasi

Tesis ini ditulis oleh :

  • Nama : ARIF RAHMAN HAKIM
  • NIM : 14210167
  • Prodi : Ilmu Komputer
  • Kampus : Margonda
  • Tahun : 2023
  • Periode : I
  • Pembimbing : Prof. Ir. Dr. Dwiza Riana, S,Si, MM, M.Kom
  • Asisten :
  • Kode : 0016.S2.IK.TESIS.I.2023
  • Diinput oleh : NZH
  • Terakhir update : 10 Juni 2024
  • Dilihat : 85 kali

TENTANG PERPUSTAKAAN


PERPUSTAKAAN UNIVERSITAS NUSA MANDIRI


E-Library Perpustakaan Universitas Nusa Mandiri merupakan platform digital yang menyedikan akses informasi di lingkungan kampus Universitas Nusa Mandiri seperti akses koleksi buku, jurnal, e-book dan sebagainya.


INFORMASI


Alamat : Jln. Jatiwaringin Raya No.02 RT08 RW 013 Kelurahan Cipinang Melayu Kecamatan Makassar Jakarta Timur

Email : perpustakaan@nusamandiri.ac.id

Jam Operasional
Senin - Jumat : 08.00 s/d 20.00 WIB
Isitirahat Siang : 12.00 s/d 13.00 WIB
Istirahat Sore : 18.00 s/d 19.00 WIB

Perpustakaan Universitas Nusa Mandiri @ 2020