Klasifikasi Software Defect Prediction Portal Media Bisnis Syariah Menggunakan Teknologi Machine Learning

  • FIKRI ISMAYA
  • 14207089

ABSTRAK

ABSTRAK

Nama             : Fikri Ismaya

NIM                 : 14207089

Program Studi: Ilmu Komputer

Fakultas          : Teknologi Informasi

Jenjang           : Strata Dua (S2)

Konsentrasi    : Software Engineering

Judul              : Klasifikasi Software Defect Prediction Portal Media Bisnis Syariah Menggunakan Teknologi Machine Learning

Penelitian ini bertujuan untuk mengembangkan prediksi cacat perangkat lunak dengan menggunakan dataset dari Bisnissyariah, sebuah situs forum yang berisi berita-berita terupdate terkait bisnis syariah. Pendekatan penelitian yang digunakan adalah rancangan penelitian yang simpel, dimaksudkan agar dapat dengan mudah dipahami oleh pembaca. Metode yang diterapkan dalam penelitian ini melibatkan model machine learning, termasuk Random Forest, Gradient Boosting, dan Support Vector Machine. Penggunaan model-model tersebut bertujuan untuk mengevaluasi dan membandingkan akurasi prediksi cacat perangkat lunak. Hasil penelitian menunjukkan bahwa model Random Forest memberikan hasil terbaik dengan tingkat akurasi sebesar 96,7%. Hasil ini menunjukkan bahwa model tersebut sangat efektif dalam memprediksi cacat perangkat lunak berdasarkan data yang berasal dari Bisnissyariah. Temuan ini memiliki implikasi penting dalam pengembangan perangkat lunak yang lebih andal dan berkualitas, khususnya dalam konteks bisnis syariah. Penelitian ini memberikan kontribusi berharga dalam meningkatkan pemahaman tentang prediksi cacat perangkat lunak dengan menggunakan data dari sumber seperti Bisnissyariah.

KATA KUNCI

Bisnissyariah.co.id,Defect Software,machine learning,Akurasi,Evaluasi Confusion Matrix


DAFTAR PUSTAKA

DAFTAR PUSTAKA

[1] A. Fadlian, “PERTANGGUNGJAWABAN PIDANA DALAM SUATU KERANGKA TEORITIS,” J. Huk. POSITUM, vol. 5, no. 2, pp. 10–19, 2020.

[2] H. Mustofa and A. A. Mahfudh, “Klasifikasi Berita Hoax Dengan Menggunakan Metode Naive Bayes,” Walisongo J. Inf. Technol., vol. 1, no. 1, p. 1, Nov. 2019, doi: 10.21580/wjit.2019.1.1.3915.

[3] B. Kurniawan, A. Purnomo, and N. Ratnawati, “Model pembelajaran pola sidang pengadilan: Suatu kerangka teoretis,” J. Integr. dan Harmon. Inov. Ilmu-Ilmu Sos., vol. 1, no. 10, pp. 1108–1112, doi: 10.17977/um063v1i102021p1108-1112.

[4] PRESIDEN REPUBLIK INDONESIA, “UNDANG UNDANG REPUBLIK INDONESIA,” Jakarta, 1999.

[5] P. Chunaev, “Community detection in node-attributed social networks: A survey,” Computer Science Review, vol. 37. Elsevier Ireland Ltd, Aug. 01, 2020, doi: 10.1016/j.cosrev.2020.100286.

[6] X. Chen, D. Zou, G. Cheng, and H. Xie, “Detecting latent topics and trends in educational technologies over four decades using structural topic modeling: A retrospective of all volumes of Computers & Education,” Comput. Educ., vol. 151, Jul. 2020, doi: 10.1016/j.compedu.2020.103855.

[7] M. A. Javed, M. S. Younis, S. Latif, J. Qadir, and A. Baig, “Community detection in networks: A multidisciplinary review,” Journal of Network and Computer Applications, vol. 108. Academic Press, pp. 87–111, Apr. 15, 2018, doi: 10.1016/j.jnca.2018.02.011.

[8] M. Almseidin, A. M. Abu Zuraiq, M. Al-kasassbeh, and N. Alnidami, “Phishing detection based on machine learning and feature selection methods,” Int. J. Interact. Mob. Technol., vol. 13, no. 12, pp. 71–183, 2019, doi: 10.3991/ijim.v13i12.11411.

[9] M. Sánchez-Paniagua, E. Fidalgo, E. Alegre, and R. Alaiz-Rodríguez, 47 Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri “Phishing websites detection using a novel multipurpose dataset and web technologies features,” Expert Syst. Appl., vol. 207, Nov. 2022, doi: 10.1016/j.eswa.2022.118010.

[10] O. K. Sahingoz, E. Buber, O. Demir, and B. Diri, “Machine learning based phishing detection from URLs,” Expert Syst. Appl., vol. 117, pp. 345–357, Mar. 2019, doi: 10.1016/j.eswa.2018.09.029.

[11] G. Santos, E. Figueiredo, A. Veloso, M. Viggiato, and N. Ziviani, “Predicting Software Defects with Explainable Machine Learning,” Dec. 2020, doi: 10.1145/3439961.3439979.

[12] R. B. Bahaweres, A. Imam Suroso, A. Wahyu Hutomo, I. Permana Solihin, I. Hermadi, and Y. Arkeman, “Tackling Feature Selection Problems with Genetic Algorithms in Software Defect Prediction for Optimization,” in Proceedings - 2nd International Conference on Informatics, Multimedia, Cyber, and Information System, ICIMCIS 2020, Nov. 2020, pp. 64–69, doi: 10.1109/ICIMCIS51567.2020.9354282.

[13] F. Matloob et al., “Software defect prediction using ensemble learning: A systematic literature review,” IEEE Access, vol. 9. Institute of Electrical and Electronics Engineers Inc., pp. 98754–98771, 2021, doi: 10.1109/ACCESS.2021.3095559.

[14] R. Setiyawan et al., “Evaluation of PHP Framework Measured Using Object-Oriented Metrics with the Analytic Hierarchy Process,” in IOP Conference Series: Materials Science and Engineering, Jul. 2020, vol. 874, no. 1, doi: 10.1088/1757-899X/874/1/012025.

[15] N. Qamar and A. A. Malik, “Birds of a Feather Gel Together: Impact of Team Homogeneity on Software Quality and Team Productivity,” IEEE Access, vol. 7, pp. 96827–96840, 2019, doi: 10.1109/ACCESS.2019.2929152.

[16] A. Kritikos, P. Polychroniadis, and I. Stamelos, “Source-o-grapher: A tool towards the investigation of software resilience in Open Source Software projects,” SoftwareX, vol. 22, May 2023, doi: 10.1016/j.softx.2023.101337. 48 Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri

[17] A. Serban, K. Van Der Blom, H. Hoos, and J. Visser, “Adoption and effects of software engineering best practices in machine learning,” Oct. 2020, doi: 10.1145/3382494.3410681.

[18] A. Davoudian and M. Liu, “Big Data Systems: A Software Engineering Perspective,” ACM Comput. Surv., vol. 53, no. 5, Sep. 2020, doi: 10.1145/3408314.

[19] S. Amershi et al., “Software Engineering for Machine Learning: A Case Study,” in Proceedings - 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice, ICSE-SEIP 2019, May 2019, pp. 291–300, doi: 10.1109/ICSE-SEIP.2019.00042.

[20] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, and J. S. Rellermeyer, “A Survey on Distributed Machine Learning,” ACM Computing Surveys, vol. 53, no. 2. Association for Computing Machinery, Jun. 01, 2020, doi: 10.1145/3377454.

[21] A. Dogan and D. Birant, “Machine learning and data mining in manufacturing,” Expert Systems with Applications, vol. 166. Elsevier Ltd, Mar. 15, 2021, doi: 10.1016/j.eswa.2020.114060.

[22] L. Yang and A. Shami, “On hyperparameter optimization of machine learning algorithms: Theory and practice,” Neurocomputing, vol. 415, pp. 295–316, Nov. 2020, doi: 10.1016/j.neucom.2020.07.061.

[23] J. L. Speiser, M. E. Miller, J. Tooze, and E. Ip, “A comparison of random forest variable selection methods for classification prediction modeling,” Expert Systems with Applications, vol. 134. Elsevier Ltd, pp. 93–101, Nov. 15, 2019, doi: 10.1016/j.eswa.2019.05.028.

[24] A. B. Adetunji, O. N. Akande, F. A. Ajala, O. Oyewo, Y. F. Akande, and G. Oluwadara, “House Price Prediction using Random Forest Machine Learning Technique,” Procedia Comput. Sci., vol. 199, pp. 806–813, 2022, doi: https://doi.org/10.1016/j.procs.2022.01.100.

[25] B. M. Khammas, “Ransomware Detection using Random Forest 49 Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri Technique,” ICT Express, vol. 6, no. 4, pp. 325–331, Dec. 2020, doi: 10.1016/j.icte.2020.11.001.

[26] H. Zhang, L. Jiang, and L. Yu, “Attribute and instance weighted naive Bayes,” Pattern Recognit., vol. 111, Mar. 2021, doi: 10.1016/j.patcog.2020.107674.

[27] S. Dey, S. Wasif, D. S. Tonmoy, S. Sultana, J. Sarkar, and M. Dey, “A Comparative Study of Support Vector Machine and Naive Bayes Classifier for Sentiment Analysis on Amazon Product Reviews,” in 2020 International Conference on Contemporary Computing and Applications, IC3A 2020, Feb. 2020, pp. 217–220, doi: 10.1109/IC3A48958.2020.233300.

[28] S. Farhana, “Classification of Academic Performance for University Research Evaluation by Implementing Modified Naive Bayes Algorithm,” Procedia Comput. Sci., vol. 194, pp. 224–228, 2021, doi: https://doi.org/10.1016/j.procs.2021.10.077.

[29] J. Cervantes, F. Garcia-Lamont, L. Rodríguez-Mazahua, and A. Lopez, “A comprehensive survey on support vector machine classification: Applications, challenges and trends,” Neurocomputing, vol. 408, pp. 189– 215, Sep. 2020, doi: 10.1016/j.neucom.2019.10.118.

[30] X. Tao et al., “Affinity and class probability-based fuzzy support vector machine for imbalanced data sets,” Neural Networks, vol. 122, pp. 289– 307, Feb. 2020, doi: 10.1016/j.neunet.2019.10.016.

[31] T. M. T. A. Hamid, R. Sallehuddin, Z. M. Yunos, and A. Ali, “Ensemble Based Filter Feature Selection with Harmonize Particle Swarm Optimization and Support Vector Machine for Optimal Cancer Classification,” Mach. Learn. with Appl., vol. 5, p. 100054, Sep. 2021, doi: 10.1016/j.mlwa.2021.100054.

[32] A. Shahraki, M. Abbasi, and Ø. Haugen, “Boosting algorithms for network intrusion detection: A comparative evaluation of Real AdaBoost, Gentle AdaBoost and Modest AdaBoost,” Eng. Appl. Artif. Intell., vol. 94, Sep. 50 Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri 2020, doi: 10.1016/j.engappai.2020.103770.

[33] W. Wang and D. Sun, “The improved AdaBoost algorithms for imbalanced data classification,” Inf. Sci. (Ny)., vol. 563, pp. 358–374, Jul. 2021, doi: 10.1016/j.ins.2021.03.042.

[34] A. Subasi and E. Kremic, “Leveraging AI and machine learning for societal challenges, cas 2019 comparison of adaboost with multiboosting for phishing website detection,” in Procedia Computer Science, 2020, vol. 168, pp. 272–278, doi: 10.1016/j.procs.2020.02.251.

[35] S. Nusinovici et al., “Logistic regression was as good as machine learning for predicting major chronic diseases,” J. Clin. Epidemiol., vol. 122, pp. 56–69, Jun. 2020, doi: 10.1016/j.jclinepi.2020.03.002.

[36] Y. Fan et al., “Privacy preserving based logistic regression on big data,” J. Netw. Comput. Appl., vol. 171, Dec. 2020, doi: 10.1016/j.jnca.2020.102769.

[37] C. Zhu, C. U. Idemudia, and W. Feng, “Improved logistic regression model for diabetes prediction by integrating PCA and K-means techniques,” Informatics Med. Unlocked, vol. 17, Jan. 2019, doi: 10.1016/j.imu.2019.100179.

[38] M. Rostami, K. Berahmand, E. Nasiri, and S. Forouzande, “Review of swarm intelligence-based feature selection methods,” Engineering Applications of Artificial Intelligence, vol. 100. Elsevier Ltd, Apr. 01, 2021, doi: 10.1016/j.engappai.2021.104210.

[39] B. H. Nguyen, B. Xue, and M. Zhang, “A survey on swarm intelligence approaches to feature selection in data mining,” Swarm Evol. Comput., vol. 54, May 2020, doi: 10.1016/j.swevo.2020.100663.

[40] N. Maleki, Y. Zeinali, and S. T. A. Niaki, “A k-NN method for lung cancer prognosis with the use of a genetic algorithm for feature selection,” Expert Syst. Appl., vol. 164, Feb. 2021, doi: 10.1016/j.eswa.2020.113981.

[41] M. A. Thanoon, M. J. M. Zedan, and A. N. Hameed, “Feature Selection 51 Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri Based on Wrapper and Information Gain,” in NICST 2019 - 1st Al-Noor International Conference for Science and Technology, Oct. 2019, pp. 32– 37, doi: 10.1109/NICST49484.2019.9043805.

[42] K. Arnavaz, A. Feragen, O. Krause, and M. Loog, “Bayesian active learning for maximal information gain on model parameters,” in Proceedings - International Conference on Pattern Recognition, 2020, pp. 10524–10531, doi: 10.1109/ICPR48806.2021.9411962.

[43] E. Odhiambo Omuya, G. Onyango Okeyo, and M. Waema Kimwele, “Feature Selection for Classification using Principal Component Analysis and Information Gain,” Expert Syst. Appl., vol. 174, Jul. 2021, doi: 10.1016/j.eswa.2021.114765.

[44] Y. Liu, S. Liao, S. Jiang, L. Ding, H. Lin, and W. Wang, “Fast CrossValidation for Kernel-Based Algorithms,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 5, pp. 1083–1096, May 2020, doi: 10.1109/TPAMI.2019.2892371.

[45] T. H. Kerbaa, A. Mezache, and H. Oudira, “Model Selection of Sea Clutter Using Cross Validation Method,” in Procedia Computer Science, 2019, vol. 158, pp. 394–400, doi: 10.1016/j.procs.2019.09.067.

[46] I. K. Nti, O. Nyarko-Boateng, and J. Aning, “Performance of Machine Learning Algorithms with Different K Values in K-fold CrossValidation,” Int. J. Inf. Technol. Comput. Sci., vol. 13, no. 6, pp. 61–71, Dec. 2021, doi: 10.5815/ijitcs.2021.06.05.

[47] A. Maru, A. K. Sharma, and M. Patel, “Hybrid Machine Learning Classification Technique for Improve Accuracy of Heart Disease,” in Proceedings of the 6th International Conference on Inventive Computation Technologies, ICICT 2021, Jan. 2021, pp. 1107–1110, doi: 10.1109/ICICT50816.2021.9358616.

[48] C. Viji, J. Beschi Raja, R. S. Ponmagal, S. T. Suganthi, P. Parthasarathi, and S. Pandiyan, “Efficient fuzzy based K-nearest neighbour technique for web services classification,” Microprocess. Microsyst., vol. 76, Jul. 2020, 52 Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri doi: 10.1016/j.micpro.2020.103097.

[49] A. Mulahuwaish, K. Gyorick, K. Z. Ghafoor, H. S. Maghdid, and D. B. Rawat, “Efficient classification model of web news documents using machine learning algorithms for accurate information,” Comput. Secur., vol. 98, Nov. 2020, doi: 10.1016/j.cose.2020.102006.

[50] K. Pal and B. V. Patel, “Data Classification with k-fold Cross Validation and Holdout Accuracy Estimation Methods with 5 Different Machine Learning Techniques,” in Proceedings of the 4th International Conference on Computing Methodologies and Communication, ICCMC 2020, Mar. 2020, pp. 83–87, doi: 10.1109/ICCMC48092.2020.ICCMC-00016.

[51] H. Foidl and M. Felderer, “Risk-based data validation in machine learningbased software systems,” in MaLTeSQuE 2019 - Proceedings of the 3rd ACM SIGSOFT International Workshop on Machine Learning Techniques for Software Quality Evaluation, co-located with ESEC/FSE 2019, Aug. 2019, pp. 13–18, doi: 10.1145/3340482.3342743.

[52] B. Bahruni and F. Fathurrahmad, “Analisis Trend Topik Pengembangan Rekayasa Perangkat Lunak dalam mendukung Strategi Kurikulum Perguruan Tinggi,” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 3, no. 2, p. 70, 2019, doi: 10.35870/jtik.v3i2.89.

[53] R. Li, L. Zhou, S. Zhang, H. Liu, X. Huang, and Z. Sun, “Software Defect Prediction Based on Ensemble Learning,” in ACM International Conference Proceeding Series, Jul. 2019, pp. 1–6, doi: 10.1145/3352411.3352412.

[54] C. L. Prabha and N. Shivakumar, “Software Defect Prediction Using Machine Learning Techniques,” in 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184), 2020, pp. 728–733, doi: 10.1109/ICOEI48184.2020.9142909.

[55] R. Malhotra and K. Khan, “A Study on Software Defect Prediction using Feature Extraction Techniques,” in 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future 53 Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri Directions) (ICRITO), 2020, pp. 1139–1144, doi: 10.1109/ICRITO48877.2020.9197999.

[56] Y. Wang et al., “Defect Prediction Model for Object Oriented Software Based on Particle Swarm Optimized SVM,” in Journal of Physics: Conference Series, May 2019, vol. 1187, no. 4, doi: 10.1088/1742- 6596/1187/4/042082.

[57] S. D. Immaculate, M. F. Begam, and M. Floramary, “Software Bug Prediction Using Supervised Machine Learning Algorithms,” in 2019 International Conference on Data Science and Communication (IconDSC), 2019, pp. 1–7, doi: 10.1109/IconDSC.2019.8816965.

[58] A. Iqbal et al., “Performance analysis of machine learning techniques on software defect prediction using NASA datasets,” Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 5, pp. 300–308, 2019, doi: 10.14569/ijacsa.2019.0100538.

[59] A. Rahim, Z. Hayat, M. Abbas, A. Rahim, and M. A. Rahim, “Software Defect Prediction with Naïve Bayes Classifier,” in Proceedings of 18th International Bhurban Conference on Applied Sciences and Technologies, IBCAST 2021, Jan. 2021, pp. 293–297, doi: 10.1109/IBCAST51254.2021.9393250.

[60] A. Saifudin, Y. Heryadi, and Lukas, “Ensemble Undersampling to Handle Unbalanced Class on Cross-Project Defect Prediction,” in IOP Conference Series: Materials Science and Engineering, Nov. 2019, vol. 662, no. 6, doi: 10.1088/1757-899X/662/6/062012.

Detail Informasi

Tesis ini ditulis oleh :

  • Nama : FIKRI ISMAYA
  • NIM : 14207089
  • Prodi : Ilmu Komputer
  • Kampus : Margonda
  • Tahun : 2023
  • Periode : I
  • Pembimbing : Dr. Windu Gata, M.Kom
  • Asisten :
  • Kode : 0012.S2.IK.TESIS.I.2023
  • Diinput oleh : NZH
  • Terakhir update : 10 Juni 2024
  • Dilihat : 109 kali

TENTANG PERPUSTAKAAN


PERPUSTAKAAN UNIVERSITAS NUSA MANDIRI


E-Library Perpustakaan Universitas Nusa Mandiri merupakan platform digital yang menyedikan akses informasi di lingkungan kampus Universitas Nusa Mandiri seperti akses koleksi buku, jurnal, e-book dan sebagainya.


INFORMASI


Alamat : Jln. Jatiwaringin Raya No.02 RT08 RW 013 Kelurahan Cipinang Melayu Kecamatan Makassar Jakarta Timur

Email : perpustakaan@nusamandiri.ac.id

Jam Operasional
Senin - Jumat : 08.00 s/d 20.00 WIB
Isitirahat Siang : 12.00 s/d 13.00 WIB
Istirahat Sore : 18.00 s/d 19.00 WIB

Perpustakaan Universitas Nusa Mandiri @ 2020