CT-GAN UNTUK MENINGKATKAN PERFORMANSI SOFTWARE EFFORT ESTIMATION MODEL

  • VENNY YULIANTY
  • 14207042

ABSTRAK

 

ABSTRAK
Nama : Venny Yulianty
NIM : 14207042
Program Studi : Ilmu Komputer
Jenjang : Strata Dua (S2)
Konsentrasi : Software Engineering
Judul Tesis : “CT-GAN untuk Meningkatkan Performansi Software Effort
Estimation Model”
Software effort estimation merupakan bagian penting dari pengembangan perangkat
lunak. Estimasi yang tidak akurat dapat menyebabkan menurunkan kualitas produk.
Software effort estimation mengidentifikasi ukuran, jumlah waktu, upaya kebutuhan
manusia, biaya dan sumber daya lainnya untuk membangun suatu sistem. Metode
machine learning merupakan salah satu metode dalam estimasi perangkat lunak yang
memiliki tingkat keakuratan yang lebih tinggi dibandingkan dengan non machine
learning. Metode dengan machine learning ini akan memberikan hasil yang lebih akurat
jika jumlah data yang digunakan besar. Dataset software effort estimation yang ada
secara publik sebagian besar memiliki jumlah data yang sedikit hingga cenderung
overfit Penelitian ini menerapkan CTGAN untuk mendapatkan data sintetis yang
diketahui dapat mempengaruhi hasil prediksi effort estimation pada model Neural
Network. Prediksi terbaik didapatkan pada dataset desharnais dengan nilai MAE
0.060502, MSE 0.0079659 dan RMSE 0.089252.
Kata kunci :
Software Effort Estimation, Regresi, CTGAN

 

KATA KUNCI

CT-GAN Untuk Meningkatkan Performansi Software


DAFTAR PUSTAKA

 

DAFTAR PUSTAKA
[1] R. R. Putri, D. O. Siahaan, and S. Sarwosri, “Peningkatan Akurasi Estimasi
Usaha dan Biaya COCOMO II Berdasarkan Gaussian dan BCO,” J. Nas. Tek.
Elektro dan Teknol. Inf., vol. 6, no. 3, 2017, doi: 10.22146/jnteti.v6i3.333.
[2] M. R. Borroek, E. Rasywir, and Y. Pratama, “Pengukuran Perangkat Lunak
Untuk Effort Estimation Dengan Teknik Pembelajaran Mesin,” J. Media Inform.
Budidarma, vol. 4, no. 2, p. 445, 2020, doi: 10.30865/mib.v4i2.2083.
[3] A. Trendowicz, Software Project Effort Estimation. Springer, 2013.
[4] A. G. Priya Varshini, K. Anitha Kumari, and V. Varadarajan, “Estimating
software development efforts using a random forest-based stacked ensemble
approach,” Electron., vol. 10, no. 10, pp. 1–19, 2021, doi:
10.3390/electronics10101195.
[5] R. R. Sinha and R. K. Gora, “Software effort estimation using machine learning
techniques,” Lect. Notes Networks Syst., vol. 135, pp. 65–79, 2021, doi:
10.1007/978-981-15-5421-6_8.
[6] J. W. G. Putra, “Pengenalan Konsep Pembelajaran Mesin dan Deep Learning
Edisi 1.4 (17 Agustus 2020),” vol. 4, pp. 45–46, 2020.
[7] H. Jiang, Machine learning fundamentals : A concise introduction. 2021.
[8] A. Shehadeh, O. Alshboul, R. E. Al Mamlook, and O. Hamedat, “Machine
learning models for predicting the residual value of heavy construction
equipment: An evaluation of modified decision tree, LightGBM, and XGBoost
regression,” Autom. Constr., vol. 129, no. November 2020, p. 103827, 2021, doi:
10.1016/j.autcon.2021.103827.
[9] X. Zhang, C. Yan, C. Gao, B. A. Malin, and Y. Chen, “Predicting Missing
Values in Medical Data Via XGBoost Regression,” J. Healthc. Informatics Res.,
vol. 4, no. 4, pp. 383–394, 2020, doi: 10.1007/s41666-020-00077-1.
[10] S. Sena, “Pengenalan Deep Learning Part 1: Neural Network,” 2017.
https://medium.com/@samuelsena/pengenalan-deep-learning-8fbb7d8028ac
[11] W. Liu, P. Wang, Y. Meng, C. Zhao, and Z. Zhang, “Cloud spot instance price
prediction using kNN regression,” Human-centric Comput. Inf. Sci., vol. 10, no.
1, 2020, doi: 10.1186/s13673-020-00239-5.
[12] P. Probst, “Hyperparameters, tuning and meta-learning for random forest and
other machine learning algorithms,” 2019, [Online]. Available: http://nbnresolving.de/urn:nbn:de:bvb:19-245579
[13] T. Agrawal, Hyperparameter Optimization in Machine Learning: Make Your
Machine Learning and Deep Learning Models More Efficient. 2021.
[14] P. Phannachitta, “On an optimal analogy-based software effort estimation,” Inf.
70 
Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri
Softw. Technol., vol. 125, no. June 2019, p. 106330, 2020, doi:
10.1016/j.infsof.2020.106330.
[15] L. Xu and K. Veeramachaneni, “Synthesizing Tabular Data using Generative
Adversarial Networks,” 2018, [Online]. Available:
http://arxiv.org/abs/1811.11264
[16] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni, “Modeling
tabular data using conditional GAN,” Adv. Neural Inf. Process. Syst., vol. 32, no.
NeurIPS, 2019.
[17] D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination Rsquared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in
regression analysis evaluation,” PeerJ Comput. Sci., vol. 7, pp. 1–24, 2021, doi:
10.7717/PEERJ-CS.623.
[18] E. K. Adhitya, R. Satria, and H. Subagyo, “Komparasi Metode Machine Learning
dan Metode Non Machine Learning untuk Estimasi Usaha Perangkat Lunak,”
IlmuKomputer.com J. Softw. Eng., vol. 1, no. 2, pp. 109–113, 2015.
[19] Z. Abdelali, H. Mustapha, and N. Abdelwahed, “Investigating the use of random
forest in software effort estimation,” Procedia Comput. Sci., vol. 148, pp. 343–
352, 2019, doi: 10.1016/j.procs.2019.01.042.
[20] A. G. Priya Varshini, K. Anitha Kumari, D. Janani, and S. Soundariya,
“Comparative analysis of Machine learning and Deep learning algorithms for
Software Effort Estimation,” J. Phys. Conf. Ser., vol. 1767, no. 1, 2021, doi:
10.1088/1742-6596/1767/1/012019.
[21] W. F. Hidayat, A. Setiadi, Y. Malau, and ..., “Seleksi Atribut dan Optimasi
Parameter Algoritma Regresi Linier Pada Datasets Software Effort Estimation,”
Bianglala Inform., vol. 9, no. 1, pp. 46–50, 2021, [Online]. Available:
https://ejournal.bsi.ac.id/ejurnal/index.php/Bianglala/article/view/10002
[22] I. Kurniawan, “Kombinasi Median Weighted Information Gain Dengan KNearest Neighbor Pada Dataset Label Months Software Effort Estimation,” J.
Teknoinfo, vol. 14, no. 2, p. 138, 2020, doi: 10.33365/jti.v14i2.647.
[23] F. González-Ladrón-de-Guevara, M. Fernández-Diego, and C. Lokan, “The
usage of ISBSG data fields in software effort estimation: A systematic mapping
study,” J. Syst. Softw., vol. 113, pp. 188–215, 2016, doi:
10.1016/j.jss.2015.11.040.
[24] P. Singal, A. C. Kumari, and P. Sharma, “Estimation of Software Development
Effort: A Differential Evolution Approach,” Procedia Comput. Sci., vol. 167, no.
2019, pp. 2643–2652, 2020, doi: 10.1016/j.procs.2020.03.343.
[25] S. Shukla, S. Kumar, and P. R. Bal, “Analyzing effect of ensemble models on
multi-layer perceptron network for software effort estimation,” Proc. - 2019
IEEE World Congr. Serv. Serv. 2019, vol. 2642–939X, pp. 386–387, 2019, doi:
10.1109/SERVICES.2019.00116.
71 
Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri
[26] I. C. Suherman, R. Sarno, and Sholiq, “Implementation of random forest
regression for COCOMO II effort estimation,” Proc. - 2020 Int. Semin. Appl.
Technol. Inf. Commun. IT Challenges Sustain. Scalability, Secur. Age Digit.
Disruption, iSemantic 2020, pp. 476–481, 2020, doi:
10.1109/iSemantic50169.2020.9234269.
[27] P. Pospieszny, B. Czarnacka-Chrobot, and A. Kobylinski, “An effective approach
for software project effort and duration estimation with machine learning
algorithms,” J. Syst. Softw., vol. 137, pp. 184–196, 2018, doi:
10.1016/j.jss.2017.11.066.
[28] A. Banimustafa, “Predicting Software Effort Estimation Using Machine Learning
Techniques,” 2018 8th Int. Conf. Comput. Sci. Inf. Technol. CSIT 2018, no. 1, pp.
249–256, 2018, doi: 10.1109/CSIT.2018.8486222.
[29] S. Bourou, A. El Saer, T. H. Velivassaki, A. Voulkidis, and T. Zahariadis, “A
review of tabular data synthesis using gans on an ids dataset,” Inf., vol. 12, no. 9,
2021, doi: 10.3390/info12090375.
[30] J. H. C. Wu and J. W. Keung, “Utilizing cluster quality in hierarchical clustering
for analogy-based software effort estimation,” Proc. IEEE Int. Conf. Softw. Eng.
Serv. Sci. ICSESS, vol. 2017-Novem, no. 1, pp. 1–4, 2018, doi:
10.1109/ICSESS.2017.8342851.
 

Detail Informasi

Tesis ini ditulis oleh :

  • Nama : VENNY YULIANTY
  • NIM : 14207042
  • Prodi : Ilmu Komputer
  • Kampus : Margonda
  • Tahun : 2022
  • Periode : II
  • Pembimbing : Dr. Agus Subekti, M.T
  • Asisten :
  • Kode : 0056.S2.IK.TESIS.II.2022
  • Diinput oleh : RKY
  • Terakhir update : 04 Agustus 2023
  • Dilihat : 120 kali

TENTANG PERPUSTAKAAN


PERPUSTAKAAN UNIVERSITAS NUSA MANDIRI


E-Library Perpustakaan Universitas Nusa Mandiri merupakan platform digital yang menyedikan akses informasi di lingkungan kampus Universitas Nusa Mandiri seperti akses koleksi buku, jurnal, e-book dan sebagainya.


INFORMASI


Alamat : Jln. Jatiwaringin Raya No.02 RT08 RW 013 Kelurahan Cipinang Melayu Kecamatan Makassar Jakarta Timur

Email : perpustakaan@nusamandiri.ac.id

Jam Operasional
Senin - Jumat : 08.00 s/d 20.00 WIB
Isitirahat Siang : 12.00 s/d 13.00 WIB
Istirahat Sore : 18.00 s/d 19.00 WIB

Perpustakaan Universitas Nusa Mandiri @ 2020