LINEAR REGRESSION & SUPPORT VECTOR REGRESSION UNTUK PREDIKSI EFFORT PADA PROJEK SCRUM DARI COSMIC FUNCTIONAL SIZE

  • NISSA MADANIYAH FADHILAH
  • 14002427

ABSTRAK

 

ABSTRAK Nama : Nissa Madaniyah Fadhilah NIM : 14002427 Program Studi : Ilmu Komputer Jenjang : Strata Dua (S2) Konsentrasi : Software Engineering Judul Thesis : Linear Regression & Support Vector Regression untuk Prediksi Effort pada Projek Scrum dari Cosmic Functional
Size Perubahan yang sering terjadi dalam proyek perangkat lunak dapat memengaruhi keakuratan prediksi effort perangkat lunak dan menghambat kesuksesan mengelola proyek Agile. Survei tentang prediksi perangkat lunak mengungkapkan bahwa hal yang paling berpengaruh pada biaya yang paling umum di antara model estimasi effort adalah ukuran perangkat lunak. Oleh karena itu, sangat penting untuk menjaga manajer tetap mendapat informasi perubahan
software size sehingga upaya peningkatan yang akurat dapat dilakukan. Penelitian ini memiliki tujuan untuk mengamati korelasi antara fitur input yang menggambarkan ukuran COSMIC dari peningkatan dan effort yang diperlukan untuk konteks scrum serta membandingkan dampak metode COSMIC dengan story point pada hasil prediksi. Dataset dari perusahaan industri scrum digunakan untuk training dan testing model prediksi. Algoritma correlation-based
feature selection juga diimplementasikan. Proses selanjutnya adalah melakukan evaluasi menggunakan model Support Vector Regression dan Linear Regression baik menggunakan COSMIC maupun tidak. Hasil menunjukan menggunaan metode COSMIC tidak meningkatkan prediksi effort dalam konteks proyek perangkat lunak Scrum.
Kata kunci: COSMIC functional size measurement, Scrum, Software effort, Support
vector regression (SVR), CFS
 

KATA KUNCI

Linear Regression,SUPPORT VECTOR REGRESSION,Cosmic Functional Size


DAFTAR PUSTAKA

 

DAFTAR REFRENSI [1] J. Choudhari and U. Suman, “Story Points Based Effort Estimation Model for Software Maintenance,” Procedia Technol., vol. 4, pp. 761–765, Jan. 2012, doi: 10.1016/J.PROTCY.2012.05.124. [2] J. Singh, K. S. Dhindsa, and J. Singh, “Performing Reengineering using Scrum Agile Framework,” Indo - Taiwan 2nd Int. Conf. Comput. Anal. Networks, Indo-Taiwan
ICAN 2020 - Proc., no. April 2021, pp. 33–35, 2020, doi: 10.1109/IndoTaiwanICAN48429.2020.9181328. [3] S. Wojewoda and S. Hastie, “CHAOS Report 2015,” Standish Gr. Int. Inc, pp. 1–13, 2015. [4] S. Abdalhamid and A. Mishra, “Adopting of agile methods in software development organizations: Systematic mapping,” TEM J., vol. 6, no. 4, pp. 817–825, 2017, doi: 10.18421/TEM64-22. [5] S. S. Ali, M. Shoaib Zafar, and M. T. Saeed, “Effort Estimation Problems in Software Maintenance - A Survey,” 2020 3rd Int. Conf. Comput. Math. Eng. Technol. Idea to
Innov. Build. Knowl. Econ. iCoMET 2020, no. March 2021, 2020, doi: 10.1109/iCoMET48670.2020.9073823. [6] “ISO - ISO_IEC 14764_2006 - Software Engineering — Software Life Cycle Processes — Maintenance.” [7] M. Vyas, A. Bohra, C. S. Lamba, and A. Vyas, “A Review on Software Cost and Effort Estimation Techniques for Agile Development Process,” vol. 5, no. 1, pp. 1 –5, 2018. [8] K. B. Desharnais JM, Buglione L, “Using the COSMIC method to estimate Agile user stories,” Proc. 12th Int. Conf. Prod. Focus. Softw. Dev. Process Improv. , 2011. [9] C. Symons, “A guide to software size measurement,” no. August, pp. 1 –71, 2020. [10] R. K. Dinata, “Machine Learning.” [11] B. Practice, Software Project Eff ort Estimation.
67 [12] B. J. Grenning, “Planning Poker or How to avoid analysis paralysis while release planning,” no. April, pp. 1 –3, 2002. [13] J. Sutherland, “Scrum handbook,” Scrum Train. Inst., no. May, p. 464, 2010. [14] H. Takeuchi and I. Nonaka, “The new new product development game,” J. Prod.
Innov. Manag., vol. 3, no. 3, pp. 205–206, 1986, doi: 10.1016/0737-6782(86)90053-6. [15] V. Christmantara, “Metodologi scrum,” iSTTS, pp. 1–6, 2013. [16] Suparyanto dan Rosad (2015, “Analisa Sentimen Review Hotel Menggunakan Algoritma Support Vector Machine Berbasis Particle Swarm Optimization,”
Suparyanto dan Rosad (2015, vol. 5, no. 3, pp. 248–253, 2020. [17] H. Jiang, W. K. Ching, K. F. C. Yiu, and Y. Qiu, “Stationary Mahalanobis kernel SVM for credit risk evaluation,” Appl. Soft Comput. J., vol. 71, pp. 407–417, 2018, doi: 10.1016/j.asoc.2018.07.005. [18] Y. Pristyanto, “Penerapan Metode Ensemble Untuk Meningkatkan Kinerja Algoritme Klasifikasi Pada Imbalanced Dataset,” J. Teknoinfo, vol. 13, no. 1, p. 11, 2019, doi: 10.33365/jti.v13i1.184. [19] S. Nurlela, P. Pascasarjana, M. Ilmu, S. Tinggi, M. Dan, and N. Mandiri, “MODEL PREDIKTIF KEBAKARAN HUTAN DENGAN SUPPORT VECTOR REGRESSION SUPPORT VECTOR REGRESSION TESIS Diajukan sebagai salah satu syarat untuk memperoleh gelar Magister Ilmu Komputer ( M . Kom ),” 2020. [20] H. Saleh and J. A. Layous, “Machine Learning – Regression By?:,” Res. Gate, no. January, p. 25, 2022, doi: 10.13140/RG.2.2.35768.67842. [21] F. F. WATI, “ANALISIS SENTIMEN REVIEW APLIKASI TIK-TOK DENGAN ALGORITMA K-NEAREST NEIGHBOR, NAIVE BAYES DAN SUPPORT VECTOR MACHINE,” pp. 61 –62, 2018. [22] K. Michalak and H. Kwa?nicka, “Correlation-based feature selection strategy in classification problems,” Int. J. Appl. Math. Comput. Sci., vol. 16, no. 4, pp. 503–511, 2006. [23] Cosmic Sizing Organization, “What Is a Cosmic Function Point?,” Https://CosmicSizing.Org/, vol. 1.0, pp. 1–8, 2018.
68 [24] C. Gencel, “How to use COSMIC functional size in effort estimation models?,” Lect.
Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), vol. 5338 LNCS, no. January 2008, pp. 196–207, 2008, doi: 10.1007/978-3-540-89403-2_17. [25] L. Conte, M., Iorio, T., Santillo, “E&Q: An Early & Quick Approach to Functional Size Measurement Methods,” Softw. Meas. Eur. Forum SMEF 2004, p. 416, 2004. [26] S. Trudel and L. Buglione, “Guideline for Sizing Agile Projects with COSMIC,”
Proc. IWSM/MetriKon/Mensura, 2010, [Online]. Available: https://www.researchgate.net/profile/Sylvie_Trudel2/publication/228842735_Guideli ne_for_Sizing_Agile_Projects_with_COSMIC/links/00b7d51489f440de6a000000.pdf [27] A. Abran, “The COSMIC Functional Size Measurement Method Version 3.0: Advanced and Related Topics,” 2007, [Online]. Available: http://www.gelog.etsmtl.ca/cosmic-ffp/updates/Advanced_and_Related_Topics.pdf [28] S. Oligny and B. Canada, “The COSMIC Functional Size Measurement Method Version 3.0.1 D,” no. September, pp. 1 –23, 2007. [29] S. Zheng, “Methods of Evaluating Estimators Mean Square Error (MSE) of an Estimator,” Stat. Theory II Methods, pp. 1–11. [30] T. Chai and R. R. Draxler, “Root mean square error (RMSE) or mean absolute error (MAE)? -Arguments against avoiding RMSE in the literature,” Geosci. Model Dev., vol. 7, no. 3, pp. 1247–1250, 2014, doi: 10.5194/gmd-7-1247-2014. [31] A. Sellami, M. Haoues, N. Borchani, and N. Bouassida, “Towards an assessment tool for controlling functional changes in scrum process,” CEUR Workshop Proc., vol. 2207, pp. 34–47, 2018. [32] M. Hosni, A. Idri, and A. Abran, “Investigating heterogeneous ensembles with filter feature selection for software effort estimation,” ACM Int. Conf. Proceeding Ser., vol. Part F1319, no. 2, pp. 207–220, 2017, doi: 10.1145/3143434.3143456. [33] C. Symons, A. Abran, C. Ebert, and F. Vogelezang, “Measurement of software size: advances made by the COSMIC community,” Proc. - 26th Int. Work. Softw. Meas.
IWSM 2016 11th Int. Conf. Softw. Process Prod. Meas. Mensura 2016, pp. 75–86, 2017, doi: 10.1109/IWSM-Mensura.2016.021.
69 [34] Z. Sakhrawi, A. Sellami, and N. Bouassida, “Requirements change requests classification: An ontology-based approach,” Adv. Intell. Syst. Comput., vol. 1181 AISC, no. January, pp. 487–496, 2021, doi: 10.1007/978-3-030-49342-4_47. [35] J. Biesiada, C. Children, and D. Wlodzislaw, “Feature Selection for HighDimensional Data — A Pearson Redundancy Based Filter Feature Selection for HighDimensional Data?: A Pearson Redundancy Based Filter,” no. July 2014, 2007, doi: 10.1007/978-3-540-75175-5. [36] T. T. Wong, “Performance evaluation of classification algorithms by k-fold and leaveone-out cross validation,” Pattern Recognit., vol. 48, no. 9, pp. 2839–2846, 2015, doi: 10.1016/j.patcog.2015.03.009. [37] D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R- squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,” PeerJ Comput. Sci., vol. 7, pp. 1 –24, 2021, doi: 10.7717/PEERJ-CS.623.
 

Detail Informasi

Tesis ini ditulis oleh :

  • Nama : NISSA MADANIYAH FADHILAH
  • NIM : 14002427
  • Prodi : Ilmu Komputer
  • Kampus : Margonda
  • Tahun : 2022
  • Periode : II
  • Pembimbing : Dr. Windu Gata, M.Kom
  • Asisten :
  • Kode : 0044.S2.IK.TESIS.II.2022
  • Diinput oleh : RKY
  • Terakhir update : 28 Juli 2023
  • Dilihat : 166 kali

TENTANG PERPUSTAKAAN


PERPUSTAKAAN UNIVERSITAS NUSA MANDIRI


E-Library Perpustakaan Universitas Nusa Mandiri merupakan platform digital yang menyedikan akses informasi di lingkungan kampus Universitas Nusa Mandiri seperti akses koleksi buku, jurnal, e-book dan sebagainya.


INFORMASI


Alamat : Jln. Jatiwaringin Raya No.02 RT08 RW 013 Kelurahan Cipinang Melayu Kecamatan Makassar Jakarta Timur

Email : perpustakaan@nusamandiri.ac.id

Jam Operasional
Senin - Jumat : 08.00 s/d 20.00 WIB
Isitirahat Siang : 12.00 s/d 13.00 WIB
Istirahat Sore : 18.00 s/d 19.00 WIB

Perpustakaan Universitas Nusa Mandiri @ 2020