IDENTIFIKASI KESEGARAN SAYURAN MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK

  • MUHAMMAD SYAHRANI
  • 14002621

ABSTRAK

 

ABSTRAK Nama : Muhammad Syahrani NIM : 14002621 Program Studi : Ilmu Komputer Jenjang : Strata Dua (S2) Konsentrasi : Image processing Judul Tesis : “Identifikasi Tingkat Kesegaran sayuran Menggunakan
Convolutional Neural Network” Penelitian ini untuk identifikasi tingkat kesegaran sayuran yang dilakukan buruh tani ketika pemanen hingga ke produsen serta konsumen. Mengandalkan
tacit knowledge petani tentunya ada keterbatasan, sehingga praktis bila kecerdasan tersebut dialihkan kepada mesin. Metode penentuan tingkat kesegaran sayuran menggunakan 3 Model Arsitektur Convolutional Neural Network (CNN) dengan melakukan Optimasi pada beberapa parameter yaitu, optimizer, learning rate, dan epoch.. Model yang dihasilkan dari pelatihan 20 epoch dapat disimpulkan bahwa untuk Bayam didapatkan oleh dari lima hidden layer dengan learning rate 0.001 pada optimizer Adam yaitu sebesar 90 %. Kemudian untuk sayuran Brokoli didapatkan dari tiga hidden layer dengan optimasi learning rate 0.001 pada optimizer Adam yaitu sebesar 64 %. Selanjutnya untuk sayuran Cabai didapatkan dari tiga hidden layer dengan optimasi learning rate 0.001 pada optimizer Adam yaitu sebesar 70 %. Kemudian untuk Sayuran Kangkung didapatkan dari tiga
hidden layer dengan optimasi learning rate 0.001 pada optimizer SGD yaitu sebesar 82 %. Untuk sayuran Sawi didapatkan dari tiga hidden layer dengan optimasi learning rate 0.0001 pada optimizer Adam yaitu sebesar 80 %. Dan untuk sayuran Tomat didapatkan dari lima hidden layer dengan optimasi learning
rate 0.001 pada optimizer Adam yaitu sebesar 66 %. Kata kunci : Sayuran, CNN, lapisan tersembunyi, Identifikasi
 

KATA KUNCI

Identifikasi Tingkat Kesegaran Sayuran,Convolutional Neural Network


DAFTAR PUSTAKA

 

DAFTAR PUSTAKA [1] Wandel M, Bugge A. Environmental concern in consumer evaluation of food quality. Food Quality and Preference. 1997;8: 19–26 [2 Lappalainen R, Kearney J, Gibney M. A pan EU survey of consumer attitudes to food, nutrition and health: An overview. Food Quality and Preference. 1998;9: 467–478" [3] Ragaert P, Verbeke W, Devlieghere F, Debevere J. Consumer perception and choice of minimally processed vegetables and packaged fruits. Food Quality and Preference. 2004;1 5: 259–270. [4] Frewer LJ, Risvik E, Schifferstein H. Food, People and Society. Berlin: Springer Science & Business Media; 2013. [5] Péneau S. Freshness of fruits and vegetables: Concept and preception. Doctoral Dissertation no 16320. Switzerland; 2006. [6] Heenan SP, Hamid N, Dufour J-P, Harvey W, Delahunty CM. Consumer freshness perceptions of breads, biscuits and cakes. Food Quality and Preference. Elsevier Ltd; 2009;20: 380–390. [7] Yamane A, Yamane A, Shibamoto T. Propanethial S-Oxide Content in Scallions (Allium fistulosum L. Variety Caespitosum) as a Possible Marker for Freshness during Cold Storage. J Agric Food Chem. 1994;42: 1010–1012. [8] Hurst 384. PL, Boulton G, Lill RE. Towards a freshness test for asparagus: spear tip asparagine content is strongly related to post-harvest accumulated heat 8. units. Food Chemistry. 1998;61 [9] PMA Toivonen. Fluoresensi Klorofil sebagai Indikator Kesegaran Tak Rusak pada Brokoli Panen. Ilmu Hort. Masyarakat Amerika untuk Ilmu Hortikultura; 1992;27: 1014–1015 [10] A. Bhargava and A. Bansal, “Fruits and vegetables quality evaluation using computer vision: A review,” Journal of King Saud University-Computer and Information Sciences, vol. 33, no. 3, pp. 243–257, 2021. [11] P. Moallem, A. Serajoddin and H. Pourghassem, “Computer vision-based apple grading for golden delicious apples based on surface features,” Information Processing in Agriculture, vol. 4, no. 1, pp. 33–40, 2017. 68
Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri [12] K. K. J. Prakash, “Spoilage detection in raspberry fruit based on spectral imaging using convolutional neural network,” MSc Dissertation, Technological University Dublin, Ireland, 201 8. [13] R. Pandey, S. Naik and R. Marfatia, “Image processing and machine learning for automated fruit grading system: A technical review,” International Journal of Computer Applications, vol. 81, no. 16, pp. 29–39, 2013. [14] M. P. Arakeri and Lakshmana, “Computer vision based fruit grading system for quality evaluation of tomato in agriculture industry,” Procedia Computer Science, vol. 79, no. 1, pp. 426–433, 2016. https://cybe rleninka.org/article/n/872976. [15] H. Hong, J. Lin and F. Huang, “Tomato disease detection and classification by deep learning,” in Proc. of ICBAIE, Fuzhou, China, pp. 25–29, 2020. [16] J. Ingram and D. Maye, “What Are the Implications of Digitalisation for Agricultural Knowledge?,” Front Sustain Food Syst, vol. 4, May 2020, doi: 10.3389/fsufs.2020.00066. [17] V. K. Vishnoi, K. Kumar, and B. Kumar, “Plant disease detection using computational intelligence and image processing,” Journal of Plant Diseases and
Protection 2020 128:1, vol. 1 28, no. 1, pp. 19–53, Aug. 2020, doi: 10.1007/S41348-020-00368-0. [18] N. Ismail and O. A. Malik, “Real-time visual inspection system for grading fruits using computer vision and deep learning techniques,” Information
Processing in Agriculture, vol. 9, no. 1, pp. 24–37, Mar. 2022, doi: 10.1016/j.inpa.2021.01.005. [19] Maulana and P. N. Andono, “Analisa Perbandingan Adaptif Median Filter Dan Median Filter Dalam Reduksi Noise Salt & Pepper,” CogITo Smart J. , vol. 2, no. 2, p. 157, 2016, doi: 10.31154/cogito.v2i2.26.157-166 [20] H. Sunandar, “Perbaikan Kualitas Citra Menggunakan Metode Gaussian Filter,” MEANS (Media Inf. Anal. dan Sist. , vol. 2, no. 1, pp. 19–22, 2017. [21] R. E. Marbun and H. D. A. N. Pembahasan, “Segmentasi Citra Spektrum Menggunakan Algoritma Region Growing TIN?: Terapan Informatika 69
Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri Nusantara,” vol. 1, no. 9, pp. 424–429, 2021 [22] S. Ratna, “Pengolahan Citra Digital Dan Histogram Dengan Phyton Dan
Text Editor Phycharm,” Technol. J. Ilm., vol. 11, no. 3, p. 181, 2020, doi: 10.31602/tji.v1 1i3.3294.
? . ? ? ?? , No” Title?? ?? ? ?? ??“, .p ,283 .1386 [23] [24] S. Adi, “Analisis Perbandingan Tingkat Akurasi Logika Fuzzy Dengan Natural Partition Untuk Preprocessing Data Perbankan,” Semnasteknomedia
Online, vol. 4, no. 1, p. 4, 2016. [25] Y. I. Kurniawan, U. M. Surakarta, and N. Bayes, “Comparison of Naive Bayes and C . 45 Algorithm in Data Mining,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 4, pp. 455–464, 2018, doi: 10.25126/jtiik. [26] E. N. Arrofiqoh and H. Harintaka, “IMPLEMENTASI METODE CONVOLUTIONAL NEURAL NETWORK UNTUK KLASIFIKASI
TANAMAN PADA CITRA RESOLUSI TINGGI,” GEOMATIKA, 2018, doi: 10.24895/jig.2018.24-2.810. [27] Hubel, D., and Wiesel, T. (1968). Receptive Fields and Functional architecture of monkey striate kortex. Journal of Physiology (London), 195, 215- 243 [28] Li, H., Wang, P., You, M., & Shen, C. (2018). Reading car license plates using deepneural networks. Elsevier. [29] Rosebrock, A. (2017). Deep Learning for Computer Vision with Python.Pyimagesearch [30] Péneau S, Hoehn E, Roth HR, Escher F, Nuessli J. Importance and consumer perception of freshness of apples. Food Quality and Preference. 2006;17: 9–19 [31] Péneau S, Brockhoff PB, Escher F, Nuessli J. A comprehensive approach to evaluate the freshness of strawberries and carrots. Postharvest Biology and Technology. 2007;45: 20–29 70
Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri [32] Jung YJ, Padmanabahn A, Hong JH, Lim J, Kim KO. Consumer freshness perception of spinach samples exposed to different storage conditions. Postharvest Biology and Technology. Elsevier B.V; 2012;73: 115–121 [33] Dowlati M, Mohtasebi SS, Omid M, Razavi SH, Jamzad M, la Guardia de
M. Freshness assessment of gilthead sea bream (Sparus aurata) by machine
vision based on gill and eye color changes. Journal of Food Engineering. Elsevier
Ltd; 2013;119: 277–287. [34] Liu X, Jiang Y, Shen S, Luo Y, Gao L. Comparison of Arrhenius model and
artificial neuronal network for the quality prediction of rainbow trout
(Oncorhynchus mykiss) fillets during storage at different temperatures. LWT—
Food Science and Technology. 201 5;60: 142–147 [35] Sanahuja S, Fédou M, Briesen H. Classification of puffed snacks freshness
based on crispiness-related mechanical and acoustical properties. Journal of Food
Engineering. Elsevier Ltd; 2018;226: 53–64. [36] Angerosa F, Giacinto LD, Vito R, Cumitini S. Sensory Evaluation of Virgin
Olive Oils by Artificial Neural Network Processing of Dynamic Head-Space Gas
Chromatographic Data. J Sci Food Agric. 1996;72: 323–328. [37] Wada Y, Tsuzuki D, Kobayashi N, Hayakawa F, Kohyama K. Visual
illusion in mass estimation of cut food. Appetite. 2007;49: 183–190.
pmid:17368640 [38] Navotas IC, Santos CNV, Balderrama EJM, Candido FEB, Villacanas AJE,
Velasco JS. Fish identification and freshness classification through image
processing using artificial neural network. ARPN Journal of Engineering and
Applied Sciences. 2018;13: 4912–4922. [39] Hu J, Zhou C, Zhao D, Zhang L, Yang G, Chen W. A rapid, low-cost deep
learning system to classify squid species and evaluate freshness based on digital
images. Fisheries Research. 2020;221: 105376–10 71
Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri [40] Bhargava A, Bansal A. Fruits and vegetables quality evaluation using
computer vision: A review. Journal of King Saud University—Computer and
Information Sciences. 2018. [41] Rumpf T, Mahlein AK, Steiner U, Oerke EC, Dehne HW, Plümer L. Early
detection and classification of plant diseases with Support Vector Machines
based on hyperspectral reflectance. Computers and Electronics in Agriculture.
Elsevier B.V; 2010;74: 91 –99. [42] El-Bendary N, Hariri El E, Hassanien AE, Badr A. Using machine learning
techniques for evaluating tomato ripeness. Expert Systems with Applications.
2015;42: 1892–1905. [43] Basheer IA, Hajmeer M. Artificial neural networks: fundamentals,
computing, design, and application. J Microbiol Methods. 2000;43: 3–31.
pmid:11084225 [44] Cortez P, Cerdeira A, Almeida F, Matos T, Reis J. Modeling wine
preferences by data mining from physicochemical properties. Decision Support
Systems. Elsevier B.V; 2009;47: 547–553. [45] Yang Y, Fu C, Chen Y-W, Xu D-L, Yang S-L. A belief rule based expert
system for predicting consumer preference in new product development.
Knowledge-Based Systems. 2016;94: 105–113 [46] Boccorh RK, Paterson A. An artificial neural network model for predicting
flavour intensity in blackcurrant concentrates. Food Quality and Preference.
2002;13: 117–128 [47] Hameed K, Chai D, Rassau A. A comprehensive review of fruit and
vegetable classification techniques. Image and Vision Computing. 2018;80: 24–
44. [48] Huang X, Yu S, Xu H, Aheto JH, Bonah E, Ma M, et al. Rapid and
nondestructive detection of freshness quality of postharvest spinaches based on
machine vision and electronic nose. Journal of Food Safety. 2019;39: e13236–8 72
Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri [49] Pietro Cavallo D, Cefola M, Pace B, Logrieco AF, Attolico G. Nondestructive automatic quality evaluation of fresh-cut iceberg lettuce through
packaging material. Journal of Food Engineering. Elsevier Ltd; 2018;223: 46–52. [50] Lawless HT, Heymann H. Sensory Evaluation of Food. Springer Science &
Business Media; 2010. [51] Giménez A, Ares F, Ares G. Sensory shelf-life estimation: A review of
current methodological approaches. Food Research International. Elsevier Ltd;
2012;49: 311–325. [52] S. E. Zaluchu, “Strategi Penelitian Kualitatif dan Kuantitatif Di Dalam Penelitian Agama,” Evang. J. Teol. Injili dan Pembin. Warga Jemaat, vol. 4, no. 1, p. 28, 2020, doi: 10.46445/ejti.v4i1.167. [53] F. Iglesias, T. Zseby, D. Ferreira, and A. Zimek, “MDCGen: Multidimensional Dataset Generator for Clustering,” J. Classif., vol. 36, no.3, pp. 599–618, 2019, doi: 10.1007/s00357-019-9312-3 [54] S. Albawi, O. Bayat, S. Al-Azawi, and O. N. Ucan, “Social touch gesture
recognition using convolutional neural network,” Comput Intell Neurosci, vol. 2018, 2018, doi: 10.1155/2018/6973103. [55] W. You, C. Shen, X. Guo, X. Jiang, J. Shi, and Z. Zhu, “A hybrid technique based on convolutional neural network and support vector regression for intelligent diagnosis of rotating machinery,” Advances in Mechanical
Engineering, vol. 9, no. 6, pp. 1 –17, 2017, doi: 10.1177/1687814017704146. [56] W. Wijanarto and S. P. Brilianti, “Peningkatan Performa Analisis Sentimen Dengan Resampling dan Hyperparameter pada Ulasan Aplikasi BNI Mobile,” Jurnal Eksplora Informatika, vol. 9, no. 2, pp. 140–153, 2020, doi: 10.30864/eksplora.v9i2.333. [57] M. D. Cookson and P. M. R. Stirk, “Pengaruh Epoch pada Akurasi menggunakan Convolutional Neural Network untuk Klasifikasi ashion dan
Furniture,” vol. 5, no. 1, pp. 53–61, 2019. 73
Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri [58] Shagar Sharma, “Epoch vs Batch Size vs Iterations,” 2017.
https://towardsdatascience.com/epoch-vs-iterations-vs-batch-size-4dfb9c7ce9c9 [59] C. Ranjan, “Rules-of-thumb for Building a Neural Network,” 2019.
https://towardsdatascience.com/17-rules-of-thumb-for-building-a-neuralnetwork-93356f9930af [60] I Mackie , Introduction to Deep Learning, Springer, 2018 [61] J. Heaton, Artifial Intellegence for Human, 2015 [62] S. Sharma, S Sharma, and A. Athaiya, ” Activation Function on Neural
Network vol.4, no 12, pp 310-316, 2020 [63] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-Excitation Networks,” IEEE Trans Pattern Anal Mach Intell, vol. 42, no. 8, pp. 2011 –2023, 2020, doi: 10.11 09/TPAMI.2019.2913372 [64] A.Sharma, “ Guided Stochastic Gradient Descent Algorithm for incosistent datset, Appl. Soft Comput: J., 2018, doi :10.1016/j.asoc.2018.09.038 [65] L Bottou, “Stochastic Gradient Learning In Neural Network.”1991 [66] D. P. Kingma and J. La. Ba, ” Adam: A Method for Stochastic
Optimization,” pp.1-15, 2015 [67] J. Brownlee, ” Understand the Impact of Learning Rate on Neural Network Performance,” 2020, [Online], Available
https://machinelearningmastery/com/understand-the-dynamics-of-learning-rateon-deep-learning-rate-neural-networks [68] S. L. Smith, P,-J. Kindermans, C. Ying, and Q. V. Le, ” Don’t Decay tThe Learning rate, Increase The Batch Size, ” pp 1-11. 2017 [69] J. D. Kelleher, Deep Learning. The MIT Press Essential Knowledge Series, 2019. 74
Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri [70] K.Khalil, O. Eldash, A Kumar, and M. Bayoumi, ” An Efficient Approach
for Neural Network Architekture,” 201 8, 25th IEE Int. Conf. Elektron. Circuits
Syst., pp.745 -748,2018,2018, doi :10.1109/ICECS.2018. 8617887 [71] L. Invernizzi, J. Long, F Chollet, T. O’Malley, and H. Jin, ” Geeting Started with keras Tuner Start the Research,” 2021, [Online]. Available:
https://keras.io/guides/keras_tuner/getting_started/ [72] K. Shankar, Y. Zhang, Y. Liu, L. Wu, and C. H. Chen, “Hyperparameter Tuning Deep Learning for Diabetic Retinopathy Fundus Image Classification,”
IEEE Access, vol. 8, pp. 118164–118173, 2020, doi: 10.1109/ACCESS.2020.3005152. [73] W. Abbes, D. Sellami, S. Marc-Zwecker, and C. Zanni-Merk, “Fuzzy decision ontology for melanoma diagnosis using KNN classifier,” Multimedia
Tools and Applications 2021 80:17, vol. 80, no. 17, pp. 25517–25538, Apr. 2021, doi: 10.1007/S11042-021-10858-4. [74] Q. Li, W. Li, J. Zhang, and Z. Xu, “An improved: K -nearest neighbour method to diagnose breast cancer,” Analyst, vol. 143, no. 12, pp. 2807–2811, Jun. 2018, doi: 10.1039/c8an00189h. [75] A. Tharwat, “Classification assessment methods,” Applied Computing and
Informatics, vol. 17, no. 1, pp. 168–192, 2018, doi: 10.1016/J.ACI.2018.08.003/FULL/PDF [76]M. A. Islam, M. S. Islam, M. S. Hossen, M. U. Emon, M. S. Keya, and A. Habib, “Machine Learning based Image Classification of Papaya Disease
Recognition,” in Proceedings of the 4th International Conference on Electronics,
Communication and Aerospace Technology, ICECA 2020, Nov. 2020, pp. 1353– 1360. doi: 10.1109/ICECA49313.2020.9297570. [77] D. M. W. Powers, “Evaluation: From precision, recall and f-measure to roc., informedness, markedness & correlation,” Journal of Machine Learning
Techn 75
Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri [78] Labiba Gillani Fahad, SyedFahad Tahir, Usama Rasheed, Hafsa Saqib, Mehdi Hasan and Hani Alquhayz, “Fruits and Vegetables Freshness Categorization Using Deep Learning”, November 2021, DOI:10.32604/cmc.2022.023357. [79] T. Bharath Kumar, Deepak Prashar, gayatri Vaidya, Vipin Kumar, S.Deva Kumar dan F, Sammy, ”A Novel Model to Detect and Classify Fresh and Damaged Fruits,” Journal of Food Quality, May 2022, https://doi.org/10.1155/2022/4661108. [80] Kento Koyama, Marin Tanaka, Byeong-Hyo, Yusaku Yoshikawa, Shige Koseki, “Predicting sensory evaluation of spinach freshness using machine learning model and digital images, Maret 2021,
https://doi.org/10.1371/journal.pone.0248769. [81] Ery Hartati, ” PENGGUNAAN KLASIFIKASI SAYUR SEGAR DAN SAYUR BUSUK MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE,” Vol. 7, No. 3, Journal of Food Quality, May 2022, Desember 2020E- ISSN 2503-2933. [82] Rufus Ocsan, Dr. Ir. Jangkung Raharjo,M.T, Irma Safitri,ST.,Msc, ” KLASIFIKASI KESEGARAN SAYUR KANGKUNG DAN DETEKSI TERPAPAR BAHAN KIMIA MENGGUNAKAN METODE GLCM, Vol.8, No.2 April 2021 , ISSN : 2355-9365 [83] Alfredo sahat Martias, Dini Sundani, ” KLASIFIKASI KESEGARAN SAYURAN HIJAU MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN), Fakultas Ilmu Komputer dan Teknologi Informasi, Universitas Gunadarma.
 

Detail Informasi

Tesis ini ditulis oleh :

  • Nama : MUHAMMAD SYAHRANI
  • NIM : 14002621
  • Prodi : Ilmu Komputer
  • Kampus : Margonda
  • Tahun : 2022
  • Periode : II
  • Pembimbing : Dr. Agus Subekti, M.T.
  • Asisten :
  • Kode : 0041.S2.IK.TESIS.II.2022
  • Diinput oleh : RKY
  • Terakhir update : 28 Juli 2023
  • Dilihat : 120 kali

TENTANG PERPUSTAKAAN


PERPUSTAKAAN UNIVERSITAS NUSA MANDIRI


E-Library Perpustakaan Universitas Nusa Mandiri merupakan platform digital yang menyedikan akses informasi di lingkungan kampus Universitas Nusa Mandiri seperti akses koleksi buku, jurnal, e-book dan sebagainya.


INFORMASI


Alamat : Jln. Jatiwaringin Raya No.02 RT08 RW 013 Kelurahan Cipinang Melayu Kecamatan Makassar Jakarta Timur

Email : perpustakaan@nusamandiri.ac.id

Jam Operasional
Senin - Jumat : 08.00 s/d 20.00 WIB
Isitirahat Siang : 12.00 s/d 13.00 WIB
Istirahat Sore : 18.00 s/d 19.00 WIB

Perpustakaan Universitas Nusa Mandiri @ 2020