KLASIFIKASI PENUTUPAN LAHAN MENGGUNAKAN GOOGLE EARTH ENGINE DENGAN METODE KLASIFIKASI TERBIMBING PADA WILAYAH PENAJAM PASER UTARA
- MUHAMMAD RAIZA PRATAMA
- 14002454
ABSTRAK
ABSTRACT
Name : Muhammad Raiza Pratama NIM : 14002454
Faculity : Information Technologi
Study ofProgram : Magister Ilmu Komputer
Level : Strata Dua (S2)
Concentration : Image Processing
Tittle : Land Cover Classification Using Google Earth Engine
(GEE) with Guided Classification Method North
Panajam Paser.
The district area is a priority area for industrial development and is one of
the capital cities in Indonesia. from the development plan in the coastal area of
North Penajam Paser Regency, it will affect land use from year to year as the
industry develops in the area. Therefore, it is important to conduct research on
the evaluation of land cover in the North Penajam Paser Regency area in order to
determine the impact of the North Penajam Paser Regency spatial plan. One
method for monitoring land cover change data is using remote sensing methods.
The method used in this study uses a guided classification with the Classification
and Regression Trees (CART) algorithm which is run through the google earth
engine. The trend of changes in land cover that experienced an increase in the
period of 2002, 2012, and 2020 was built up land, bush grass, open land. The
trend of land cover changes that have decreased in the period of 2002, 2012, and
2022 is vegetation, water bodies, ponds, and rice fields.
Keywords: North Penajam Paser Area, Land Cover, Google Earth Engine, CART
KATA KUNCI
Klasifikasi,Metode Klasifikasi
DAFTAR PUSTAKA
DAFTAR PUSTAKA [1] S. M. Herrmann, M. Brandt, K. Rasmussen, and R. Fensholt, “Accelerating land cover change in West Africa over four decades as population pressure increased,” Communications Earth &
Environment, vol. 1, no. 1, Dec. 2020, doi: 10.1038/s43247-020- 00053-y. [2] L. Wang et al., “A summary of the special issue on remote sensing of land change science with Google earth engine,” Remote Sensing of
Environment, vol. 248. Elsevier Inc., Oct. 01, 2020. doi: 10.1016/j.rse.2020.112002. [3] D. Simonetti, E. Simonetti, Z. Szantoi, A. Lupi, and H. D. Eva, “First Results from the Phenology-Based Synthesis Classifier Using Landsat 8 Imagery,” IEEE Geoscience and Remote Sensing Letters, vol. 12, no. 7, pp. 1496–1500, Jul. 2015, doi: 10.1109/LGRS.2015.2409982. [4] E. Maulana, T. R. Wulan, D. S. Wahyunungsih, F. Ibrahim, A. S. Putra, and M. D. Putra, “Geoecology identification using landsat 8 for spatial planning in north Sulawesi Coastal,” Indonesian Journal
of Geography, vol. 49, no. 2, pp. 212–217, 2017, doi: 10.22146/ijg.13189. [5] S. J. Baillarin et al., “SENTINEL-2 LEVEL 1 PRODUCTS AND IMAGE PROCESSING PERFORMANCES,” The International
Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, vol. XXXIX-B1, pp. 197–202, Jul. 2012, doi: 10.5194/isprsarchives-xxxix-b1-197-2012. [6] Karen. Fletcher and European Space Agency., Sentinel-1?: ESA’s
radar observatory mission for GMES operational services. ESA Communications, 2012. [7] “Landsat Collection 2”, doi: 10.3133/fs20213002. [8] H. A. Zurqani, J. S. Allen, C. J. Post, C. A. Pellett, and T. C. Walker, “Mapping and quantifying agricultural irrigation in heterogeneous 67
Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri landscapes using Google Earth Engine,” Remote Sensing
Applications: Society and Environment, vol. 23, Aug. 2021, doi: 10.1016/j.rsase.2021.100590. [9] T. C. Novianti, “KLASIFIKASI LANDSAT 8 OLI UNTUK TUTUPAN LAHAN DI KOTA PALEMBANG MENGGUNAKAN GOOGLE EARTH ENGINE.” [Online]. Available: http://code.earthengine.google.com/ [10] “Estimated Use of Water in the United States in 2010.” [11] B. A. Margono, J. R. B. Bwangoy, P. v. Potapov, and M. C. Hansen, “Mapping wetlands in Indonesia using landsat and PALSAR datasets and derived topographical indices,” Geo-Spatial Information
Science, vol. 17, no. 1, pp. 60–71, 2014, doi: 10.1080/10095020.2014.898560. [12] J. P. Ardila, V. A. Tolpekin, W. Bijker, and A. Stein, “Markovrandom-field-based super-resolution mapping for identification of urban trees in VHR images,” ISPRS Journal of Photogrammetry and
Remote Sensing, vol. 66, no. 6, pp. 762–775, Nov. 2011, doi: 10.1016/j.isprsjprs.2011.08.002. [13] H. Shi, L. Chen, F. K. Bi, H. Chen, and Y. Yu, “Accurate Urban Area Detection in Remote Sensing Images,” IEEE Geoscience and Remote
Sensing Letters, vol. 12, no. 9, pp. 1 948–1952, Sep. 2015, doi: 10.1109/LGRS.2015.2439696. [14] P. Gong et al., “Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data,”
International Journal of Remote Sensing, vol. 34, no. 7, pp. 2607– 2654, 2013, doi: 10.1080/01431161.2012.748992. [15] M. C. Hansen, R. Sohlberg, R. S. Defries, and J. R. G. Townshend, “Global land cover classification at 1 km spatial resolution using a classification tree approach,” International Journal of Remote
Sensing, vol. 21, no. 6–7, pp. 1331–1364, Jan. 2000, doi: 10.1080/014311600210209. [16] H. A. Zurqani, C. J. Post, E. A. Mikhailova, M. A. Schlautman, and J. 68
Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri L. Sharp, “Geospatial analysis of land use change in the Savannah River Basin using Google Earth Engine,” International Journal of
Applied Earth Observation and Geoinformation, vol. 69, pp. 175– 185, Jul. 2018, doi: 10.1016/j.jag.2017.12.006. [17] H. Huang et al., “Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine,” Remote Sensing of
Environment, vol. 202, pp. 166–176, Dec. 2017, doi: 10.1016/j.rse.2017.02.021. [18] K. Jia, X. Wei, X. Gu, Y. Yao, X. Xie, and B. Li, “Land cover classification using Landsat 8 Operational Land Imager data in Beijing, China,” Geocarto International, vol. 29, no. 8, pp. 941 –951, 2014, doi: 10.1080/10106049.2014.894586. [19] L. Wang et al., “A summary of the special issue on remote sensing of land change science with Google earth engine,” Remote Sensing of
Environment, vol. 248. Elsevier Inc., Oct. 01, 2020. doi: 10.1016/j.rse.2020.112002. [20] B. E. Cahyono, E. B. Febriawan, and A. T. Nugroho, “Analisis Tutupan Lahan Menggunakan Metode Klasifikasi Tidak Terbimbing Citra Landsat di Sawahlunto, Sumatera Barat,” Jurnal Teknotan, vol. 13, no. 1, p. 8, Aug. 2019, doi: 10.24198/jt.vol13n1.2. [21] S. Wahyuni, H. Guchi, and B. Hidayat, “Analisis Perubahan Penggunaan Lahan dan Penutupan Lahan Tahun 2003 dan 2013 di Kabupaten Dairi Analysis of Land Use and Land Cover Change year 2003 and 2013 in Dairi Regency,” vol. 2, no. 4, pp. 1310–1315, 2014. [22] BINA, KR. 2018. “EVALUASI PERUBAHAN PENGGUNAAN LAHAN
PESISIR DI KOTA PASURUAN.” (21): 1 –9. [23] A. L. Fitriana, S. Subiyanto, and H. S. Firdaus, “MODEL CELLULAR AUTOMATA MARKOV UNTUK PREDIKSI PERKEMBANGAN FISIK WILAYAH PERMUKIMAN KOTA SURAKARTA MENGGUNAKAN SISTEM INFORMASI GEOGRAFIS,” 2017. [24] P. Gong et al., “Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+
data,” International Journal of Remote Sensing, vol. 34, no. 7, pp. 2607–2654, 2013, doi: 10.1080/01431161.2012.748992. [25] Badan Standardisasi Nasional. 2014. “SNI 7645-1:2014 Klasifikasi Penutup Lahan - Bagian 1?: Skala Kecil Dan Menengah.” Badan Standardisasi Nasional: 1 –51. [26] By Landsat Missions, “Landsat 7.” [27] By Landsat Missions, “Landsat 8,” Mar. 11, 2013. [28] “permen-lhk-no.-1-tahun-2022”. [29] Butler, K. (2013, July 24). Band Combinations For Landsat 8. Dipetik November 21, 2013, dari http://blogs.esri.com/esri/arcgis/2013/07/24/bandcombinations-forlandsat-8/ [30] G. Sitanggang Peneliti Bidang Bangfatja, “KAJIAN PEMANFAATAN SATELIT MASA DEPAN: SISTEM PENGINDERAAN JAUH SATELIT LDCM (LANDSAT-8).” [Online]. Available: http://space.skyrocket. [31] D. Inventarisasi Dan Pemantauan Sumber Daya Hutan Direktorat Jenderal Planologi Kehutanan Dan Tata Lingkungan Kementerian Lingkungan Hidup Dan Kehutanan, S. Direktorat Pemetaan dan Dokumentasi Tematik Kehutanan Gd Manggala Wanabakti, and J. Jend Gatot Subroto, “REKALKULASI PENUTUPAN LAHAN INDONESIA TAHUN 2020.” [32] N. Simarmata and S. Heru Murti, “KARAKTERISKTIK BACKSCATTER CITRA ALOS PALSAR POLARISASI HH DAN HV TERHADAP PARAMETER BIOFISIK HUTAN DI SEBAGIAN TAMAN NASIONAL KERINCI SEBLAT.” [33] “Google Developers.” https://developers.google.com/earth-engine/ (August 6, 2021). Ilmu, S, Administrasi Negara, Jurusan Administrasi Publik, and Fakultas Ilmu. 2012. “Kecamatan Brondong Kabupaten Lamongan.” : 1 –14. [34] Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone. Classification And Regression Trees 70
Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri
[35] A. Sistem Informasi Geografis dan Penginderaan Jauh untuk Pemetaan Penggunaan dan Kesesuaian Lahan di Desa Batur Tengah Kabupaten Bangli, P. Studi Agroekoteknologi, and F. P. Pertanian Universitas Udayana Jl Sudirman Denpasar Bali, “E-Jurnal Agroekoteknologi Tropika,” vol. 8, no. 1, 2019, [Online]. Available:
https://ojs.unud.ac.id/index.php/JAT127. [36] 1959, Arthur Samuel. [37] R. Pradono Iswara, T. Informatika, F. Sains dan Teknologi, U. Syarif Hidayatullah Jakarta, and S. Gotong Royong Jakarta, “PENGEMBANGAN ALGORITMA UNSUPERVISED LEARNING TECHNIQUE PADA BIG DATA ANALYSIS DI MEDIA SOSIAL SEBAGAI MEDIA PROMOSI ONLINE BAGI MASYARAKAT,” JURNAL TEKNIK INFORMATIKA, vol. 12, no. 1, 2019. [38] F. K. Yudichandra, W. Widiatmaka, and S. Anwar, “Perubahan dan Prediksi Penggunaan Lahan Menggunakan Markov – Cellular Automata di Kota Batu,” TATALOKA, vol. 22, no. 2, pp. 202–211, May 2020, doi: 10.14710/tataloka.22.2.202-211. [39] N. I. Wahyuni, D. I. D. Arini, and A. Ahmad, “IDENTIFIKASI PERUBAHAN KERAPATAN VEGETASI KOTA MANADO TAHUN 2001 SAMPAI 2015,” MAJALAH ILMIAH GLOBE, vol. 19, no. 1, p. 65, Apr. 2017, doi: 10.24895/mig.2017.19-1.448.
Detail Informasi
Tesis ini ditulis oleh :
- Nama : MUHAMMAD RAIZA PRATAMA
- NIM : 14002454
- Prodi : Ilmu Komputer
- Kampus : Margonda
- Tahun : 2022
- Periode : I
- Pembimbing : Prof. Dr. Dwiza Riana, S,Si, MM, M.Kom
- Asisten :
- Kode : 0014.S2.IK.TESIS.I.2022
- Diinput oleh : RKY
- Terakhir update : 19 Mei 2023
- Dilihat : 330 kali
TENTANG PERPUSTAKAAN

E-Library Perpustakaan Universitas Nusa Mandiri merupakan
platform digital yang menyedikan akses informasi di lingkungan kampus Universitas Nusa Mandiri seperti akses koleksi buku, jurnal, e-book dan sebagainya.
INFORMASI
Alamat : Jln. Jatiwaringin Raya No.02 RT08 RW 013 Kelurahan Cipinang Melayu Kecamatan Makassar Jakarta Timur
Email : perpustakaan@nusamandiri.ac.id
Jam Operasional
Senin - Jumat : 08.00 s/d 20.00 WIB
Isitirahat Siang : 12.00 s/d 13.00 WIB
Istirahat Sore : 18.00 s/d 19.00 WIB
Perpustakaan Universitas Nusa Mandiri @ 2020