CONVOLUTIONAL NEURAL NETWORK UNTUK KLASIFIKASI TINGKAT KEMATANGAN BUAH PEPAYA
- YUSUF ARIF SETIAWAN
- 14002634
ABSTRAK
ABSTRAK
Nama : Yusuf Arif Setiawan .
NIM : 14002634
Program Studi : Ilmu Komputer
Fakultas : Teknologi Informasi
Jenjang : Strata Dua (S2)
Konsentrasi : Image Processing
Judul Tesis : “Convolutional Neural Network Untuk Klasifikasi Tingkat
Kematangan Buah Pepaya”
Penelitian ini untuk menentukan tingkat kematangan buah pepaya california
(Carica papaya l.) yang dilakukan buruh tani ketika pemanenan. Turn over
tenaga kerja dipertanian terhitung tinggi, sehingga buruh keluar masuk dari
pekerjaan. Hal ini menyita waktu petani karena harus selalu mengajarkan kepada
buruh baru bagaimana cara memanen buah pepaya. Pemanenan yang salah
menyebabkan kerugian. Mengandalkan tacit knowledge petani tentunya ada
keterbatasan, sehingga praktis bila kecerdasan tersebut dialihkan kepada mesin.
Metode penentuan tingkat kematangan buah pepaya menggunakan Arsitektur
CNN dengan dataset 1.500 citra buah pepaya yang dibagi menjadi data latih dan
data uji. Model yang dihasilkan dari pelatihan 20 epoch menunjukkan bahwa
pendekatan transfer learning clasification model VGG16 menunjukkan akurasi
paling baik yaitu 97 persen.
Kata kunci: CNN, Tacit Knowledge, Transfer Learning, Classification, Maturity
level
KATA KUNCI
Convolutional Neural Network
DAFTAR PUSTAKA
DAFTAR REFERENSI
[1] M. M. Fitch, “ Carica papaya papaya. ,” Biotechnology of fruit and
nut crops, pp. 174–201, Jan. 2005, doi:
10.1079/9780851996622.0174.
[2] R. E. Paull et al., “Fruit Development, Ripening and Quality Related
Genes in the Papaya Genome,” Trop Plant Biol, vol. 1, no. 3–4, pp.
246–277, Dec. 2008, doi: 10.1007/s12042-008-9021-2.
[3] C. X. Tan, S. T. Tan, and S. S. Tan, “An overview of papaya seed oil
extraction methods,” Int J Food Sci Technol, vol. 55, no. 4, pp.
1506–1514, Apr. 2020, doi: 10.1111/IJFS.14431.
[4] H. Tsuge et al., “Inhibition Mechanism of Cathepsin L-Specific
Inhibitors Based on the Crystal Structure of Papain-CLIK148
Complex,” 1999. [Online]. Available: http://www.idealibrary.com
[5] Maciej Serda et al., “Nutritional and medicinal values of papaya
(Carica papaya L.),” Uniwersytet ?l?ski, vol. 7, no. 1, pp. 307–324,
2012, doi: 10.2/JQUERY.MIN.JS.
[6] “FAOSTAT.” https://www.fao.org/faostat/en/#data/QCL/visualize
(accessed Oct. 07, 2022).
[7] Z. Zhou, R. Ford, I. Bar, and C. Kanchana-Udomkan, “Papaya
(Carica papaya l.) flavour profiling,” Genes, vol. 12, no. 9. MDPI,
Sep. 01, 2021. doi: 10.3390/genes12091416.
[8] T. A. Shaikh, W. A. Mir, T. Rasool, and S. Sofi, “Machine Learning
for Smart Agriculture and Precision Farming: Towards Making the
Fields Talk,” Archives of Computational Methods in Engineering
2022, pp. 1–41, Jul. 2022, doi: 10.1007/S11831-022-09761-4.
[9] P. Darshini, S. M. Kumar, K. Prasad, and S. N. Jagadeesha, “A cost
and power analysis of farmer using smart farming iot system,”
Lecture Notes on Data Engineering and Communications
Technologies, vol. 66, pp. 251–260, 2021, doi: 10.1007/978-981-16-
0965-7_21/COVER.
[10] J. Ingram and D. Maye, “What Are the Implications of Digitalisation
for Agricultural Knowledge?,” Front Sustain Food Syst, vol. 4, May
2020, doi: 10.3389/fsufs.2020.00066.
[11] V. K. Vishnoi, K. Kumar, and B. Kumar, “Plant disease detection
using computational intelligence and image processing,” Journal of
Plant Diseases and Protection 2020 128:1, vol. 128, no. 1, pp. 19–
53, Aug. 2020, doi: 10.1007/S41348-020-00368-0.
46
Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri
[12] N. Ismail and O. A. Malik, “Real-time visual inspection system for
grading fruits using computer vision and deep learning techniques,”
Information Processing in Agriculture, vol. 9, no. 1, pp. 24–37, Mar.
2022, doi: 10.1016/j.inpa.2021.01.005.
[13] K. Dozono, S. Amalathas, and R. Saravanan, “The Impact of Cloud
Computing and Artificial Intelligence in Digital Agriculture,”
Lecture Notes in Networks and Systems, vol. 235, pp. 557–569,
2022, doi: 10.1007/978-981-16-2377-6_52/COVER.
[14] K. Dalkir, Knowledge Management in Theory and Practice.
Elsevier, 2005.
[15] L. Uden and W. He, “How the Internet of Things can help
knowledge management: a case study from the automotive domain,”
Journal of Knowledge Management, vol. 21, no. 1, pp. 57–70, 2017,
doi: 10.1108/JKM-07-2015-0291/FULL/XML.
[16] Gunawan, Hidayat Kliwon, and Purnomo Mangku, “Penerapan
Inovasi Teknologi Ramah Lingkungan Pada Komunitas Petani
Sayuran,” HABITAT, vol. XXIV, no. 1, pp. 22–35, Apr. 2013.
[17] A. Goldstein, L. Fink, A. Meitin, S. Bohadana, O. Lutenberg, and G.
Ravid, “Applying machine learning on sensor data for irrigation
recommendations: revealing the agronomist’s tacit knowledge,”
Precis Agric, vol. 19, no. 3, pp. 421–444, Jun. 2018, doi:
10.1007/s11119-017-9527-4.
[18] G. Hinton, A Practical Guide to Training Restricted Boltzmann
Machines. 2010. Accessed: Jul. 03, 2022. [Online]. Available:
http://learning.cs.toronto.edu
[19] N. H. H. Cuong et al., “An approach based on deep learning that
recommends fertilizers and pesticides for agriculture
recommendation,” International Journal of Electrical and Computer
Engineering (IJECE), vol. 12, no. 5, pp. 5580–5588, Oct. 2022, doi:
10.11591/ijece.v12i5.pp5580-5588.
[20] J. Naranjo-Torres, M. Mora, R. Hernández-García, R. J. Barrientos,
C. Fredes, and A. Valenzuela, “A review of convolutional neural
network applied to fruit image processing,” Applied Sciences
(Switzerland), vol. 10, no. 10. MDPI AG, May 01, 2020. doi:
10.3390/app10103443.
[21] L. F. Santos Pereira, S. Barbon, N. A. Valous, and D. F. Barbin,
“Predicting the ripening of papaya fruit with digital imaging and
random forests,” Comput Electron Agric, vol. 145, pp. 76–82, Feb.
2018, doi: 10.1016/j.compag.2017.12.029.
47
Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri
[22] S. K. Behera, A. K. Rath, and P. K. Sethy, “Maturity status
classification of papaya fruits based on machine learning and
transfer learning approach,” Information Processing in Agriculture,
vol. 8, no. 2, pp. 244–250, Jun. 2021, doi:
10.1016/j.inpa.2020.05.003.
[23] C. A. Garillos-Manliguez and J. Y. Chiang, “Multimodal deep
learning and visible-light and hyperspectral imaging for fruit
maturity estimation,” Sensors (Switzerland), vol. 21, no. 4, pp. 1–18,
Feb. 2021, doi: 10.3390/s21041288.
[24] V. Bali, A. Kumar, and S. Gangwar, “A novel approach for wind
speed forecasting using LSTM-ARIMA deep learning models,”
International Journal of Agricultural and Environmental
Information Systems, vol. 11, no. 3, pp. 13–30, Jul. 2020, doi:
10.4018/IJAEIS.2020070102.
[25] J. Gross, H. Baumgartl, and R. Buettner, “A Novel Machine
Learning Approach for High-Performance Diagnosis of Premature
Internet Addiction Using the Unfolded EEG Spectra,” undefined,
2020.
[26] W. Wang and K. Siau, “Artificial intelligence, machine learning,
automation, robotics, future of work and future of humanity: A
review and research agenda,” Journal of Database Management,
vol. 30, no. 1, pp. 61–79, 2019, doi: 10.4018/JDM.2019010104.
[27] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.
521, no. 7553. Nature Publishing Group, pp. 436–444, May 27,
2015. doi: 10.1038/nature14539.
[28] N. M. Khan, N. Abraham, and L. Guan, “Machine Learning on
Biomedical Images: Interactive Learning, Transfer Learning, Class
Imbalance, and Beyond,” Feb. 2019, Accessed: Oct. 07, 2022.
[Online]. Available: http://arxiv.org/abs/1902.05908
[29] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S. Lew, “Deep
learning for visual understanding: A review,” Neurocomputing, vol.
187, pp. 27–48, Apr. 2016, doi: 10.1016/j.neucom.2015.09.116.
[30] Y. Lecun, E. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based
Learning Applied to Document Recognition,” 1998.
[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
Classification with Deep Convolutional Neural Networks,” Adv
Neural Inf Process Syst, vol. 25, 2012, Accessed: Oct. 17, 2022.
[Online]. Available: http://code.google.com/p/cuda-convnet/
48
Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri
[32] Y. Lu, “Food Image Recognition by Using Convolutional Neural
Networks (CNNs),” Dec. 2016, [Online]. Available:
http://arxiv.org/abs/1612.00983
[33] S. W. Chen et al., “Counting Apples and Oranges with Deep
Learning: A Data-Driven Approach,” IEEE Robot Autom Lett, vol.
2, no. 2, pp. 781–788, Apr. 2017, doi: 10.1109/LRA.2017.2651944.
[34] U. Alganci, M. Soydas, and E. Sertel, “Comparative Research on
Deep Learning Approaches for Airplane Detection from Very HighResolution Satellite Images,” Remote Sensing 2020, Vol. 12, Page
458, vol. 12, no. 3, p. 458, Feb. 2020, doi: 10.3390/RS12030458.
[35] Y. Zhang, J. Kong, M. Qi, Y. Liu, J. Wang, and Y. Lu, “Object
Detection Based on Multiple Information Fusion Net,” Applied
Sciences 2020, Vol. 10, Page 418, vol. 10, no. 1, p. 418, Jan. 2020,
doi: 10.3390/APP10010418.
[36] D. Scherer, A. Müller, and S. Behnke, “Evaluation of Pooling
Operations in Convolutional Architectures for Object Recognition”,
Accessed: Oct. 17, 2022. [Online]. Available: http://www.ais.unibonn.de
[37] V. Christlein, L. Spranger, M. Seuret, A. Nicolaou, P. Kral, and A.
Maier, “Deep generalized max pooling,” Proceedings of the
International Conference on Document Analysis and Recognition,
ICDAR, pp. 1090–1096, Sep. 2019, doi:
10.1109/ICDAR.2019.00177.
[38] N. Ismail and O. A. Malik, “Real-time visual inspection system for
grading fruits using computer vision and deep learning techniques,”
Information Processing in Agriculture, vol. 9, no. 1, pp. 24–37, Mar.
2022, doi: 10.1016/J.INPA.2021.01.005.
[39] D. S. Tran, N. H. Ho, H. J. Yang, E. T. Baek, S. H. Kim, and G. Lee,
“Real-Time Hand Gesture Spotting and Recognition Using RGB-D
Camera and 3D Convolutional Neural Network,” Applied Sciences
2020, Vol. 10, Page 722, vol. 10, no. 2, p. 722, Jan. 2020, doi:
10.3390/APP10020722.
[40] W. Shi, Y. Gong, X. Tao, J. Wang, and N. Zheng, “Improving CNN
performance accuracies with min-max objective,” IEEE Trans
Neural Netw Learn Syst, vol. 29, no. 7, pp. 2872–2885, Jul. 2018,
doi: 10.1109/TNNLS.2017.2705682.
[41] A. Nasiri, A. Taheri-Garavand, and Y. D. Zhang, “Image-based deep
learning automated sorting of date fruit,” Postharvest Biol Technol,
vol. 153, pp. 133–141, Jul. 2019, doi:
10.1016/J.POSTHARVBIO.2019.04.003.
49
Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri
[42] Y. Sawada, Y. Sato, T. Nakada, K. Ujimoto, and N. Hayashi, “AllTransfer Learning for Deep Neural Networks and Its Application to
Sepsis Classification,” undefined, vol. 285, pp. 1586–1587, 2016,
doi: 10.3233/978-1-61499-672-9-1586.
[43] Z. tao Hu, L. Zhou, B. Jin, and H. jiang Liu, “Applying Improved
Convolutional Neural Network in Image Classification,” Mobile
Networks and Applications, vol. 25, no. 1, pp. 133–141, Feb. 2020,
doi: 10.1007/S11036-018-1196-7.
[44] B. Zoph, V. Vasudevan, J. Shlens, and Q. v. Le, “Learning
Transferable Architectures for Scalable Image Recognition,” in
Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, Dec. 2018, pp. 8697–8710. doi:
10.1109/CVPR.2018.00907.
[45] S. Chakraborty, F. M. J. M. Shamrat, M. M. Billah, M. al Jubair, M.
Alauddin, and R. Ranjan, “Implementation of Deep Learning
Methods to Identify Rotten Fruits,” Proceedings of the 5th
International Conference on Trends in Electronics and Informatics,
ICOEI 2021, pp. 1207–1212, Jun. 2021, doi:
10.1109/ICOEI51242.2021.9453004.
[46] R. Siddiqi, “Fruit-classification model resilience under adversarial
attack,” vol. 4, p. 31, 2022, doi: 10.1007/s42452-021-04917-6.
[47] D. Mohapatra, N. Das, and K. K. Mohanty, “Deep neural network
based fruit identification and grading system for precision
agriculture,” Proceedings of the Indian National Science Academy
2022 88:2, vol. 88, no. 2, pp. 228–239, May 2022, doi:
10.1007/S43538-022-00079-0.
[48] A. Kumar, R. C. Joshi, M. K. Dutta, M. Jonak, and R. Burget,
“Fruit-CNN: An Efficient Deep learning-based Fruit Classification
and Quality Assessment for Precision Agriculture,” International
Congress on Ultra Modern Telecommunications and Control
Systems and Workshops, vol. 2021-October, pp. 60–65, 2021, doi:
10.1109/ICUMT54235.2021.9631643.
[49] S. H. Wang and Y. D. Zhang, “DenseNet-201-Based Deep Neural
Network with Composite Learning Factor and Precomputation for
Multiple Sclerosis Classification,” ACM Transactions on Multimedia
Computing, Communications and Applications, vol. 16, no. 2s, Jul.
2020, doi: 10.1145/3341095.
[50] Y. Li and L. Liu, “Image quality classification algorithm based on
InceptionV3 and SVM,” MATEC Web of Conferences, vol. 277, p.
02036, 2019, doi: 10.1051/matecconf/201927702036.
50
Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri
[51] M. Rezaee and Y. Zhang, “Road detection using Deep Neural
Network in high spatial resolution images,” 2017 Joint Urban
Remote Sensing Event, JURSE 2017, May 2017, doi:
10.1109/JURSE.2017.7924619.
[52] Z. Sun, G. Bebis, and R. Miller, “On-road vehicle detection: A
review,” IEEE Trans Pattern Anal Mach Intell, vol. 28, no. 5, pp.
694–711, May 2006, doi: 10.1109/TPAMI.2006.104.
[53] T. Y. Lee, J. S. Oh, and J. H. Kim, “On-road vehicle detection based
on appearance features for autonomous vehicles,” ICCAS 2015 -
2015 15th International Conference on Control, Automation and
Systems, Proceedings, pp. 1720–1723, Dec. 2015, doi:
10.1109/ICCAS.2015.7364641.
[54] S. Y. Jo, N. Ahn, Y. Lee, and S. J. Kang, “Transfer Learning-based
Vehicle Classification,” Proceedings - International SoC Design
Conference 2018, ISOCC 2018, pp. 127–128, Feb. 2019, doi:
10.1109/ISOCC.2018.8649802.
[55] Y. Wu, X. Qin, Y. Pan, and C. Yuan, “Convolution neural network
based transfer learning for classification of flowers,” 2018 IEEE 3rd
International Conference on Signal and Image Processing, ICSIP
2018, pp. 562–566, Jan. 2019, doi:
10.1109/SIPROCESS.2018.8600536.
[56] M. E. Nilsback and A. Zisserman, “Automated flower classification
over a large number of classes,” Proceedings - 6th Indian
Conference on Computer Vision, Graphics and Image Processing,
ICVGIP 2008, pp. 722–729, 2008, doi: 10.1109/ICVGIP.2008.47.
[57] X. Xia, C. Xu, and B. Nan, “Inception-v3 for flower classification,”
2017 2nd International Conference on Image, Vision and
Computing, ICIVC 2017, pp. 783–787, Jul. 2017, doi:
10.1109/ICIVC.2017.7984661.
[58] T. Saitoh and T. Kaneko, “Automatic recognition of wild flowers,”
Proceedings - International Conference on Pattern Recognition, vol.
15, no. 2, pp. 507–510, 2000, doi: 10.1109/ICPR.2000.906123.
[59] J. R. Rajayogi, G. Manjunath, and G. Shobha, “Indian Food Image
Classification with Transfer Learning,” CSITSS 2019 - 2019 4th
International Conference on Computational Systems and
Information Technology for Sustainable Solution, Proceedings, Dec.
2019, doi: 10.1109/CSITSS47250.2019.9031051.
[60] T. Durand, N. Mehrasa, and G. Mori, “Learning a Deep ConvNet for
Multi-Label Classification With Partial Labels,” undefined, vol.
51
Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri
2019-June, pp. 647–657, Jun. 2019, doi:
10.1109/CVPR.2019.00074.
[61] K. Panihar and V. Verma, “A Study Some Data Mining
Classification Techniques,” undefined, vol. 4, no. 1, pp. 210–215,
Jan. 2017, doi: 10.21884/IJMTER.2017.4031.ZT9TV.
[62] V. Atliha and D. Sesok, “Comparison of VGG and ResNet used as
Encoders for Image Captioning,” 2020 IEEE Open Conference of
Electrical, Electronic and Information Sciences, eStream 2020 -
Proceedings, Apr. 2020, doi:
10.1109/ESTREAM50540.2020.9108880.
[63] T. F. Gonzalez, “Handbook of approximation algorithms and
metaheuristics,” 2007, Accessed: Oct. 18, 2022. [Online]. Available:
https://books.google.com/books/about/Handbook_of_Approximation
_Algorithms_and.html?hl=fr&id=QK3_VU8ngK8C
[64] K. Simonyan, “Very Deep Convolutional Networks for Large-Scale
Image Recognition.,” 2015, Accessed: Oct. 18, 2022. [Online].
Available: http://arxiv.org/abs/1409.1556
[65] M. Ferguson, R. Ak, Y.-T. T. Lee, and K. H. Law, “Automatic
Localization of Casting Defects with Convolutional Neural
Networks.”
[66] S. N. Alfisahrin, “Komparasi Algoritma C4.5, Naive Bayes dan
Neural Network Untuk Memprediksi Penyakit Jantung,”
Pascasarjana Magister Ilmu Komputer STMIK Nusa Mandiri, 2014.
[67] F. Gorunescu, “Data mining: Concepts, models and techniques,”
Intelligent Systems Reference Library, 2011, doi: 10.1007/978-3-
642-19721-5.
[68] M. Bramer, Principle of Data Mining Second Edition. London,
Inggris: Springer, 2013.
[69] K. Hastuti, “Analisis komparasi algoritma klasifikasi data mining
untuk prediksi mahasiswa non aktif,” Seminar Nasional Teknologi
Informasi & Komunikasi Terapan, 2012.
[70] H. M and S. M.N, “A Review on Evaluation Metrics for Data
Classification Evaluations,” International Journal of Data Mining &
Knowledge Management Process, vol. 5, no. 2, pp. 01–11, 2015, doi:
10.5121/ijdkp.2015.5201.
[71] M. S. Hossen, I. Haque, M. S. Islam, M. T. Ahmed, M. J. Nime, and
M. A. Islam, “Deep learning based classification of papaya disease
recognition,” in Proceedings of the 3rd International Conference on
52
Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri
Intelligent Sustainable Systems, ICISS 2020, Dec. 2020, pp. 945–
951. doi: 10.1109/ICISS49785.2020.9316106.
[72] M. A. Islam, M. S. Islam, M. S. Hossen, M. U. Emon, M. S. Keya,
and A. Habib, “Machine Learning based Image Classification of
Papaya Disease Recognition,” in Proceedings of the 4th
International Conference on Electronics, Communication and
Aerospace Technology, ICECA 2020, Nov. 2020, pp. 1353–1360.
doi: 10.1109/ICECA49313.2020.9297570.
[73] G. Adnan, Rukminingsih, and M. A. Latief, “Metode Penelitian
Pendidikan: Penelitian Kuantitatif, Penelitian Kualitatif, Penelitian
Tindakan Kelas,” undefined, 2020.
[74] S. R. Dubey and A. S. Jalal, “Application of Image Processing in
Fruit and Vegetable Analysis: A Review,” Journal of Intelligent
Systems, vol. 24, no. 4. Walter de Gruyter GmbH, pp. 405–424, Dec.
01, 2015. doi: 10.1515/jisys-2014-0079.
[75] D. W. Cash et al., “Knowledge systems for sustainable
development.” [Online]. Available:
www.pnas.orgcgidoi10.1073pnas.1231332100
[76] Bionutrient Food Association/Real Food Campaign, “Refractive
Index of Crop Juices .”
[77] L. F. Santos Pereira, S. Barbon, N. A. Valous, and D. F. Barbin,
“Predicting the ripening of papaya fruit with digital imaging and
random forests,” Comput Electron Agric, vol. 145, pp. 76–82, Feb.
2018, doi: 10.1016/j.compag.2017.12.029.
[78] S. K. Behera, A. K. Rath, and P. K. Sethy, “Maturity status
classification of papaya fruits based on machine learning and
transfer learning approach,” Information Processing in Agriculture,
vol. 8, no. 2, pp. 244–250, Jun. 2021, doi:
10.1016/j.inpa.2020.05.003.
[79] A. Herliana, V. A. Setiawan, and R. T. Prasetio, “Penerapan
Inferensi Backward Chaining Pada Sistem Pakar Diagnosa Awal
Penyakit Tulang,” Jurnal Informatika, vol. 5, no. 1, pp. 50–60, 2018,
doi: 10.31311/ji.v5i1.2818.
[80] A. Sucipto, Y. Fernando, R. I. Borman, and N. Mahmuda,
“Penerapan Metode Certainty Factor Pada Diagnosa Penyakit Saraf
Tulang Belakang,” Jurnal Ilmiah FIFO, vol. 10, no. 2, p. 18, 2019,
doi: 10.22441/fifo.2018.v10i2.002.
[81] L. A. Hafiz and D. Andreswari, “Tulang Berbasis Web
Menggunakan,” vol. 6, no. 1, pp. 105–114, 2018.
53
Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri
[82] S. Albawi, O. Bayat, S. Al-Azawi, and O. N. Ucan, “Social touch
gesture recognition using convolutional neural network,” Comput
Intell Neurosci, vol. 2018, 2018, doi: 10.1155/2018/6973103.
[83] W. You, C. Shen, X. Guo, X. Jiang, J. Shi, and Z. Zhu, “A hybrid
technique based on convolutional neural network and support vector
regression for intelligent diagnosis of rotating machinery,” Advances
in Mechanical Engineering, vol. 9, no. 6, pp. 1–17, 2017, doi:
10.1177/1687814017704146.
[84] W. Wijanarto and S. P. Brilianti, “Peningkatan Performa Analisis
Sentimen Dengan Resampling dan Hyperparameter pada Ulasan
Aplikasi BNI Mobile,” Jurnal Eksplora Informatika, vol. 9, no. 2,
pp. 140–153, 2020, doi: 10.30864/eksplora.v9i2.333.
[85] M. D. Cookson and P. M. R. Stirk, “Pengaruh Epoch pada Akurasi
menggunakan Convolutional Neural Network untuk Klasifikasi
ashion dan Furniture,” vol. 5, no. 1, pp. 53–61, 2019.
[86] Shagar Sharma, “Epoch vs Batch Size vs Iterations,” 2017.
https://towardsdatascience.com/epoch-vs-iterations-vs-batch-size-
4dfb9c7ce9c9
[87] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-andExcitation Networks,” IEEE Trans Pattern Anal Mach Intell, vol.
42, no. 8, pp. 2011–2023, 2020, doi: 10.1109/TPAMI.2019.2913372.
[88] J. D. Kelleher, Deep Learning. The MIT Press Essential Knowledge
Series, 2019.
[89] C. Ranjan, “Rules-of-thumb for Building a Neural Network,” 2019.
https://towardsdatascience.com/17-rules-of-thumb-for-building-aneural-network-93356f9930af
[90] K. Shankar, Y. Zhang, Y. Liu, L. Wu, and C. H. Chen,
“Hyperparameter Tuning Deep Learning for Diabetic Retinopathy
Fundus Image Classification,” IEEE Access, vol. 8, pp. 118164–
118173, 2020, doi: 10.1109/ACCESS.2020.3005152.
[91] W. Abbes, D. Sellami, S. Marc-Zwecker, and C. Zanni-Merk,
“Fuzzy decision ontology for melanoma diagnosis using KNN
classifier,” Multimedia Tools and Applications 2021 80:17, vol. 80,
no. 17, pp. 25517–25538, Apr. 2021, doi: 10.1007/S11042-021-
10858-4.
[92] Q. Li, W. Li, J. Zhang, and Z. Xu, “An improved: K -nearest
neighbour method to diagnose breast cancer,” Analyst, vol. 143, no.
12, pp. 2807–2811, Jun. 2018, doi: 10.1039/c8an00189h.
54
Program Studi Ilmu Komputer (S2) Universitas Nusa Mandiri
[93] A. Tharwat, “Classification assessment methods,” Applied
Computing and Informatics, vol. 17, no. 1, pp. 168–192, 2018, doi:
10.1016/J.ACI.2018.08.003/FULL/PDF.
[94] D. M. W. Powers, “Evaluation: From precision, recall and f-measure
to roc., informedness, markedness & correlation,” Journal of
Machine Learning Technologies , vol. 2, no. 1, pp. 37–63, 2011.
Detail Informasi
Tesis ini ditulis oleh :
- Nama : YUSUF ARIF SETIAWAN
- NIM : 14002634
- Prodi : Ilmu Komputer
- Kampus : Margonda
- Tahun : 2022
- Periode : I
- Pembimbing : Dr. Agus Subekti, M.T
- Asisten :
- Kode : 0008.S2.IK.TESIS.I.2022
- Diinput oleh : RKY
- Terakhir update : 17 Mei 2023
- Dilihat : 190 kali
TENTANG PERPUSTAKAAN

E-Library Perpustakaan Universitas Nusa Mandiri merupakan
platform digital yang menyedikan akses informasi di lingkungan kampus Universitas Nusa Mandiri seperti akses koleksi buku, jurnal, e-book dan sebagainya.
INFORMASI
Alamat : Jln. Jatiwaringin Raya No.02 RT08 RW 013 Kelurahan Cipinang Melayu Kecamatan Makassar Jakarta Timur
Email : perpustakaan@nusamandiri.ac.id
Jam Operasional
Senin - Jumat : 08.00 s/d 20.00 WIB
Isitirahat Siang : 12.00 s/d 13.00 WIB
Istirahat Sore : 18.00 s/d 19.00 WIB
Perpustakaan Universitas Nusa Mandiri @ 2020