PENGGUNAAN TWITTER DALAM MENGANALISA SENTIMEN KEBIJAKAN RANCANGAN CIPTA KERJA OMNIBUS LAW
- SUROHMAN
- 14002280
ABSTRAK
ABSTRAK
Nama :
Surohman
NIM :
14002280
Program Studi :
Magister Ilmu Komputer
Jenjang :
Strata Dua (S2)
Konsentrasi :
Data Mining
Judul :
“Penggunaan Twitter Dalam Menganalisa Sentimen Kebijakan Rancangan Cipta Kerja Omnibus Law”
Media sosial saat ini merupakan sesuatu yang tidak mungkin terpisah dari setiap orang, seperti Instagram, twitter, facebook, path, line dan banyak lagi. Dari fenomena ini, menjadikan media sosial sebagai sumber data yang dapat digunakan untuk mencari opini publik secara instan. Analisa terhadap suatu fenomena menjadi pokok bahasan menarik untuk dibahas dan menjadi trending topik salah satu sentiment yang dijadikan pada penelitian ini adalah tentang opini publik terhadap omnibuslaw cipta kerja Beragam komentar dikumpulkan dan diklasifikasikan menjadi sebuah dataset untuk menilai komentar mengenai sentiment omnibuslaw positif atau negatif yang diproses dengan menggunakan tools rapidminer dengan menggunakan komparasi algoritma naïve bayes, support vector machine dan k-nearest neighbor hasilnya algoritma support vector machine memiliki akurasi lebih unggul sebesar 85,88% untuk sentiment analisis pada topik omnibuslaw cipta kerja. Tujuan penelitian ini untuk mengetahui pro dan kontra terhadap opini yang dibahas yaitu omnibuslaw cipta kerja.
Kata kunci: Omnibuslaw, Sentiment analisis, Support Vector Machine, Naïve Bayes, K – Nearest Naighbor.
KATA KUNCI
Data Mining
DAFTAR PUSTAKA
DAFTAR REFERENSI
[1] C. Patel, P. Budhwar, A. Witzemann, and A. Katou, “HR outsourcing: The impact on HR’s strategic role and remaining in-house HR function,” J. Bus. Res., vol. 103, no. February, pp. 397–406, 2019.
[2] F. S. Fitri, M. N. S. Si, and C. Setianingsih, “Sentiment analysis on the level of customer satisfaction to data cellular services using the naive bayes classifier algorithm,” Proc. - 2018 IEEE Int. Conf. Internet Things Intell. Syst. IOTAIS 2018, pp. 201–206, 2019.
[3] F. Damanpour, C. Magelssen, and R. M. Walker, “Outsourcing and insourcing of organizational activities: the role of outsourcing process mechanisms,” Public Manag. Rev., vol. 00, no. 00, pp. 1–24, 2019.
[4] A. Rane and A. Kumar, “Sentiment Classification System of Twitter Data for US Airline Service Analysis,” Proc. - Int. Comput. Softw. Appl. Conf., vol. 1, pp. 769–773, 2018.
[5] L. F. Vosko, E. Tucker, and R. Casey, “Enforcing employment standards for temporary migrant agricultural workers in Ontario, Canada: Exposing underexplored layers of vulnerability,” Int. J. Comp. Labour Law Ind. Relations, vol. 35, no. 2, pp. 227–254, 2019.
[6] R. N. Chory, M. Nasrun, and C. Setianingsih, “Sentiment analysis on user satisfaction level of mobile data services using Support Vector Machine (SVM) algorithm,” Proc. - 2018 IEEE Int. Conf. Internet Things Intell. Syst. IOTAIS 2018, pp. 194–200, 2019.
[7] J. K. J. Gonzales, “DigitalCommons @ ILR Equal Employment Opportunity Commission , Plaintiff , v . Atlas Electrical Construction , Inc . Defendant .,” 2019.
[8] Mihuandayani, E. Utami, and E. T. Luthfi, “Text mining based on tax comments as big data analysis using SVM and feature selection,” 2018 Int. Conf. Inf. Commun. Technol. ICOIACT 2018, vol. 2018-Janua, pp. 537–542, 2018.
[9] J. V. A. Phillips, “DigitalCommons @ ILR U . S . Equal Employment Opportunity Commission vs . The Guidance Charter School,” 2019.
[10] Y. Yuan, Z. Chu, F. Lai, and H. Wu, “The impact of transaction attributes on logistics outsourcing success: A moderated mediation model,” Int. J. Prod. Econ., vol. 219, no. April 2019, pp. 54–65, 2020.
[11] B. F. Churchill and J. J. Sabia, “The Effects of Minimum Wages on Low-Skilled Immigrants’ Wages, Employment, and Poverty,” Ind. Relat. (Berkeley)., vol. 58, no. 2, pp. 275–314, 2019.
[12] C. S. Henry, K. P. Huynh, G. Nicholls, and M. W. Nicholson, “2018 Bitcoin Omnibus Survey: Awareness and Usage,” p. 42, 2019.
[13] E. Fontana and N. Egels-Zandén, “Non Sibi, Sed Omnibus: Influence of Supplier Collective Behaviour on Corporate Social Responsibility in the Bangladeshi Apparel Supply Chain,” J. Bus. Ethics, vol. 159, no. 4, pp. 1047–1064, 2019.
59
[14] C. D. Allen and C. A. McNeely, “Do restrictive omnibus immigration laws reduce enrollment in public health insurance by Latino citizen children? A comparative interrupted time series study,” Soc. Sci. Med., vol. 191, pp. 19–29, 2017.
[15] I. Rozi, S. Pramono, and E. Dahlan, “Implementasi Opinion Mining (Analisis Sentimen) Untuk Ekstraksi Data Opini Publik Pada Perguruan Tinggi,” J. EECCIS, vol. 6, no. 1, pp. 37–43, 2012.
[16] F. Ramadhanti, Y. Wibisono, and R. A. Sukamto, “Analisis Morfologi untuk Menangani Out-of-Vocabulary Words pada Part-of-Speech Tagger Bahasa Indonesia Menggunakan Hidden Markov Model,” J. Linguist. Komputasional, vol. 2, no. 1, p. 6, 2019.
[17] N. K. Wardhani et al., “Sentiment analysis article news coordinator minister of maritime affairs using algorithm naive bayes and support vector machine with particle swarm optimization,” J. Theor. Appl. Inf. Technol., 2018.
[18] J. Wu, J. Xin, and N. Zheng, “SVM learning from imbalanced microanuerysm candidate datasets used feature selection by gini index,” in 2015 IEEE International Conference on Information and Automation, ICIA 2015 - In conjunction with 2015 IEEE International Conference on Automation and Logistics, 2015.
[19] B. Liu, “Sentiment analysis and opinion mining,” Synth. Lect. Hum. Lang. Technol., 2012.
[20] T. Nasukawa and J. Yi, “Sentiment analysis: Capturing favorability using natural language processing,” in Proceedings of the 2nd International Conference on Knowledge Capture, K-CAP 2003, 2003.
[21] Twitter Inc., “About Twitter,” Twitter About. 2014.
[22] D. J. Hand, “Data Mining: Methods and Models by D. T. Larose,” Biometrics, 2008.
[23] F. Hadzic, H. Tan, and T. S. Dillon, “Graph mining,” Stud. Comput. Intell., 2011.
[24] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques. 2012.
[25] E. Frank, M. Hall, L. Trigg, G. Holmes, and I. H. Witten, “Data mining in bioinformatics using Weka,” Bioinformatics, 2004.
[26] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter , a Social Network or a News Media??,” pp. 591–600, 2010.
[27] G. Valkanas, A. Saravanou, and D. Gunopulos, “A Faceted Crawler for the Twitter Service,” pp. 178–188, 2014.
[28] J. E. Sembodo, E. B. Setiawan, and A. Baizal, “Data Crawling Otomatis pada Twitter,” no. October 2018, pp. 10–16, 2016.
[29] I. Hemalatha, “Preprocessing the Informal Text for efficient,” no. July 2012, 2019.
[30] J. A. Septian, T. M. Fahrudin, and A. Nugroho, “Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor,” no. September, 2019.
[31] L. . Utami, “Analisis Sentimen Opini Publik Berita Kebakaran Hutan Melalui Komparasi Algoritma Support Vector Machine dan K-Nearest Neighbor Berbasis Particle Swarm Optimization,” J. Pilar Nusa Mandiri, vol. 13, no. 1, pp. 103–112, 2017.
[32] H. M. Nawawi, S. Rahayu, J. J. Purnama, and S. I. Komputer, “Algoritma c4.5 untuk memprediksi pengambilan keputusan memilih deposito berjangka,” J. Techno Nuasa Mandiri, vol. 16, no. 1, pp. 65–72, 2019.
[33] Hermanto, A. Mustopa, and A. Y. Kuntoro, “ALGORITMA K L A SIFIKASI NAIVE BAYES DAN SUPPORT VECTOR MACHINE DALAM LAYANAN KOMPLAIN MAHASISWA,” J. ILMU Pengetah. DAN Teknol. Komput., vol. 5, no. 2, pp. 211–220, 2020.
[34] A. Rohman, “MODEL ALGORITMA K-NEAREST NEIGHBOR (K-NN) UNTUK PREDIKSI KELULUSAN MAHASISWA,” J. Ilm. Teknol., vol. 1, no. 1, 2015.
[35] J. Maillo, S. Ramírez, I. Triguero, and F. Herrera, “kNN-IS: An Iterative Spark-based design of the k-Nearest Neighbors classifier for big data,” Knowledge-Based Syst., vol. 117, pp. 3–15, 2017.
[36] R. Moraes, J. F. Valiati, and W. P. Gavião Neto, “Document-level sentiment classification: An empirical comparison between SVM and ANN,” Expert Syst. Appl., 2013.
[37] H. L. Chen, B. Yang, J. Liu, and D. Y. Liu, “A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis,” Expert Syst. Appl., 2011.
[38] M. Tsytsarau and T. Palpanas, “Survey on mining subjective data on the web,” Data Min. Knowl. Discov., 2012.
[39] J. Mathew, M. Luo, C. K. Pang, and H. L. Chan, “Kernel-based SMOTE for SVM classification of imbalanced datasets,” in IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society, 2015.
[40] Aprilla Dennis, “Belajar Data Mining dengan RapidMiner,” Innov. Knowl. Manag. Bus. Glob. Theory Pract. Vols 1 2, 2013.
[41] Y. N. Dewi and F. A. Sariasih, “Metode Sample Bootstrapping Untuk Meningkatkan Performa Algoritma Naive Bayes Pada Citra Tunggal Pap Smear,” J. Tek. Inform., vol. 12, no. 1, pp. 1–10, 2019.
[42] T. A. Setiawan, R. Satria, and A. Syukur, “Integrasi Metode Sample Bootstrapping dan Weighted Principal Component Analysis untuk Meningkatkan Performa k Nearest Neighbor pada Dataset Besar,” vol. 1, no. 2, pp. 76–81, 2015.
[43] T. Agus, S. M. Adib, and A. Karomi, “Penerapan Metode Sample Bootstrapping untuk Meningkatkan Performa kNearest Neighbor pada Dataset Berdimensi Tinggi,” IC-Tech, vol. XII, no. 1, April, pp. 9–14, 2017.
[44] S. Kurniawan, W. Gata, D. A. Puspitawati, I. K. S. Parthama, H. Setiawan, and S. Hartini, “Text Mining Pre-Processing Using Gata Framework and RapidMiner for Indonesian Sentiment Analysis,” IOP Conf. Ser. Mater. Sci. Eng., vol. 835, no. 1, 2020.
[45] A. Go, R. Bhayani, and L. Huang, “Twitter Sentiment Classification using Distant Supervision,” Processing, 2009.
[46] Siswanto, Y. P. Wibawa, W. Gata, G. Gata, and N. Kusumawardhani, “Classification Analysis of MotoGP Comments on Media Social Twitter Using Algorithm Support Vector Machine and Naive Bayes,” in Proceedings of ICAITI 2018 - 1st International Conference on Applied Information Technology and Innovation: Toward A New Paradigm for the Design of Assistive Technology in Smart Home Care, 2019.
[47] R. L. Hasanah, M. Hasan, W. E. Pangesti, F. F. Wati, and W. Gata, “KLASIFIKASI PENERIMA DANA BANTUAN DESA MENGGUNAKAN METODE KNN (K-NEAREST NEIGHBOR),” J. Techno Nusa Mandiri, 2019.
[48] HERNAWATI and W. GATA, “Sentimen Analisis Operasi Tangkap Tangan KPK Menurut Masyarakat Menggunakan Algoritma Support Vector Machine , Naive Bayes Berbasis Particle Swarm Optimizition,” vol. 12, no. 3, pp. 230–243, 2019.
[49] A. R. Alaei, S. Becken, and B. Stantic, “Sentiment Analysis in Tourism: Capitalizing on Big Data,” J. Travel Res., vol. 58, no. 2, pp. 175–191, 2019.
[50] H. S. Utama, D. Rosiyadi, D. Aridarma, and B. S. Prakoso, “Sentimen Analisis Kebijakan Ganjil Genap Di Tol Bekasi Menggunakan Algoritma Naive Bayes Dengan Optimalisasi Information Gain,” J. Pilar Nusa Mandiri, vol. 15, no. 2, pp. 247–254, 2019.
[51] M. Rezwanul, A. Ali, and A. Rahman, “Sentiment Analysis on Twitter Data using KNN and SVM,” Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 6, pp. 19–25, 2017.
[52] F. A. Allah, W. I. Grosky, and D. Aboutajdine, “Document clustering based on diffusion maps and a comparison of the k-means performances in various spaces,” in Proceedings - IEEE Symposium on Computers and Communications, 2008.
Detail Informasi
Tesis ini ditulis oleh :
- Nama : SUROHMAN
- NIM : 14002280
- Prodi : Ilmu Komputer
- Kampus : Kramat Raya
- Tahun : 2020
- Periode : II
- Pembimbing : Dr. Windu Gata, M.Kom
- Asisten :
- Kode : 0049.S2.IK.TESIS.II.2020
- Diinput oleh : RKY
- Terakhir update : 26 Juli 2022
- Dilihat : 161 kali
TENTANG PERPUSTAKAAN

E-Library Perpustakaan Universitas Nusa Mandiri merupakan
platform digital yang menyedikan akses informasi di lingkungan kampus Universitas Nusa Mandiri seperti akses koleksi buku, jurnal, e-book dan sebagainya.
INFORMASI
Alamat : Jln. Jatiwaringin Raya No.02 RT08 RW 013 Kelurahan Cipinang Melayu Kecamatan Makassar Jakarta Timur
Email : perpustakaan@nusamandiri.ac.id
Jam Operasional
Senin - Jumat : 08.00 s/d 20.00 WIB
Isitirahat Siang : 12.00 s/d 13.00 WIB
Istirahat Sore : 18.00 s/d 19.00 WIB
Perpustakaan Universitas Nusa Mandiri @ 2020