IDENTIFIKASI SPESIES KUPU-KUPU MENGGUNAKAN FITUR GLCM DAN DETEKSI TEPI DENGAN ALGORITMA KNN (K-NEAREST NEIGHBOR) DAN DECISION TREE (C.45)

  • MUHAMAD HASAN
  • 14002203

ABSTRAK

ABSTRAK

 

 

 

Nama                     :     Muhamad Hasan

NIM                      :     14002203

Program Studi       :     Magister Ilmu Komputer

Jenjang                  :     Strata Dua (S2)

Konsentrasi           :     Image Processing

Judul                     :     “Identifikasi Spesies Menggunakan Fitur GLCM dan Deteksi Tepi Menggunakan Algoritma KNN (K-Nearest Neighbor) dan Decision Tree (C.45)

 

            Kupu-kupu adalah serangga yang berasal dari kingdom Animalia, yang merupakan kelas Insecta, ordo Lepidoptera dan sub ordo dari Rhopalocera. Kupu-kupu dapat diklasifikasikan menurut pola yang ditemukan pada sayap kupu-kupu. Spesies kupu-kupu memiliki pola berbeda berdasarkan pigmen, struktur sisik dan jatuhnya sinar matahari. Kelemahan mata manusia dalam membedakan pola pada kupu-kupu adalah fondasi dalam membangun identifikasi kupu-kupu berdasarkan pada pengenalan pola. Penelitian ini menggunakan 3 spesies kupu-kupu: Adonis, Black Hairstreak dan Gray Hairstreak. Dataset kupu-kupu yang digunakan adalah 150 yang diperoleh secara online. Tahap pra-pemrosesan menggunakan metode segmentasi dan deteksi tepi. Tahap ekstraksi fitur menggunakan metode Graylevel Co-occurrence Matriks (GLCM) yang mengekstraksi 8 fitur bentuk dan tekstur diantaranya area, perimeter, metric, eccentricity, contras, correlation, energy, dan homogeneity. Fase klasifikasi menggunakan metode K-Nearest Neighbor (KNN) dengan nilai k = 3, 5, 7, 9, 11, 13, 15, 17 dan 19, serta metode Decision Tree (C.45). Hasil Identifikasi kupu-kupu dengan akurasi tertinggi diperoleh oleh Algoritma KNN dari pengujian dengan nilai k = 3 sebesar 93,33%, sedangkan hasil akurasi dengan metode Decision Tree (C.45) dengan akurasi 84,44%. Sementara hasil identifikasi yang diperoleh menggunakan aplikasi yang dibuat menggunakan GUI Matlab2017 dengan algoritma KNN memperoleh akurasi sebesar 93,33% dengan nilai k = 3.

Kata kunci: Kupu-Kupu, K-Means, GLCM, Canny, KNN, Decision Tree, Identifikasi

KATA KUNCI

K-Nearest Neighbor


DAFTAR PUSTAKA

DAFTAR PUSTAKA

 

[1]      N. A. S. A. Zarim And A. B. Ahmad, “Checklist Of Butterfly Fauna At Kuala Lompat , Krau Wildlife Reserve , Pahang , Malaysia,” J. Wildl. Park., Vol. 28, No. December, Pp. 63–72, 2015.

[2]      D. Peggie, “Kajian Diversitas Kupu-Kupu (Lepidoptera: Papilionoidea & Hesperioidea) Dan Potensi Pemanfaatannya Di Hutan Petungkriyono, Kabupaten Pekalongan, Jawa Tengah,” J. Penelit. Dan Pengemb. Pembang., Vol. 02, No. 02, Pp. 106–123, 2018.

[3]      Purwowidodo, “Studi Keanekaragaman Hayati Kupu-Kupu (Sub Ordo Rhopalocera) Dan Peranan Ekologisnya Di Area Hutan Lindung Kaki Gunung Prau Kabupaten Kendal Jawa Tengah,” Universitas Islam Negeri Walisongo, 2015.

[4]      M. Ghazanfar, M. F. Malik, M. Hussain, R. Iqbal, And M. Younas, “Butterflies And Their Contribution In Ecosystem?: A Review Butterflies And Their Contribution In Ecosystem?: A Review,” J. Entomol. Zool. Stud., Vol. 4, No. February, Pp. 114–118, 2016.

[5]      Butterfly Conservation, “Why Butterflies Matter,” 2020. [Online]. Available: Https://Butterfly-Conservation.Org/. [Accessed: 11-Apr-2020].

[6]      S.-H. Kang And T.-H. Kim, “A Performance Improvement Of Automatic Butterfly Identification Method Using Color Intensity Entropy,” J. Korea Contents Assoc., Vol. 17, No. 5, Pp. 624–632, 2017.

[7]      L. Feng, B. Bhanu, And J. Heraty, “A Software System For Automated Identification Attributes,” Pattern Recognit., 2015.

[8]      Y. Kaya, L. Kayci, And M. Uyar, “Automatic Identification Of Butterfly Species Based On Local Binary Patterns And Artificial Neural Network,” Appl. Soft Comput. J., Vol. 28, Pp. 132–137, 2015.

[9]      L. Kayci And Y. Kaya, “A Vision System For Automatic Identification Of Butterfly Species Using A Grey-Level Co-Occurrence Matrix And Multinomial Logistic Regression,” Zool. Middle East, Vol. 60, No. October 2015, Pp. 37–41, 2015.

[10]    J. R. Sahambangung, R. Munir, And J. B. Sanger, “Menggunakan Metode K-Nearest Neighbor,” J. Realt., Vol. 14, No. 2, Pp. 169–179, 2018.

[11]    F. Perez-Sanz, P. J. Navarro, And M. Egea-Cortines, “Plant Phenomics?: An Overview Of Image Acquisition Technologies And Image Data Analysis Algorithms,” Gigascience, Vol. 6, No. 11, Pp. 1–18, 2017.

[12]    J. Li, S. Clara, And Haojian, “Mobile Device Image Acquisition Using Objects Of Interest Recognition,” United States Pat., Vol. 2, No. 12, 2017.

[13]    T. Suyama, Hamamatsu, And T. Onishi, “Image Acquisition Device And Image Acquisition Method,” United States Pat., Vol. 2, 2019.

[14]    B. Manasa, S. L. Jagadeesh, N. Thammaiah, And Nethravathi, “Colour Measurement Of Ripening Mango Fruits As Influenced By Pre-Harvest Treatments Using L * A * B * Coordinates,” J. Pharmacogn. Phytochem., Vol. 8, No. 1, Pp. 2466–2470, 2019.

[15]    Z. Abidin, K. Bunyamin, D. Ikbal, E. Feyza, And G. Sezai, “Estimation Of The Colour Properties Of Apples Varieties Using Neural Network,” Erwerbs-Obstbau, Vol. 59, Pp. 291–299, 2017.

[16]    K. Xiao Et Al., “Characterising The Variations In Ethnic Skin Colours: A New Calibrated Data Base For Human Skin,” Ski. Res. Technol., No. 5, Pp. 21–29, 2017.

[17]    A. S. Sinaga, “Segmentasi Ruang Warna L * A * B,” J. Matrik Penusa, Vol. 3, No. 1, Pp. 43–46, 2019.

[18]    M. Jaroš, P. Strakoš, T. Karásek, L. Ríha, M. Jarošová, And T. Kozubek, “Implementation Of K-Means Segmentation Algorithm On Intel Xeon Phi And Gpu?: Application In Medical Imaging,” Adv. Eng. Softw., Vol. 0, Pp. 1–8, 2016.

[19]    S. Zhang, H. Wang, W. Huang, And Z. You, “Optik Plant Diseased Leaf Segmentation And Recognition By Fusion Of,” Opt. - Int. J. Light Electron Opt., Vol. 157, Pp. 866–872, 2018.

[20]    Atina, “Segmentasi Citra Paru Menggunakan Metode K-Means Clustering,” J. Pendidik. Fis. Dan Keilmuan, Vol. 3, No. 2, Pp. 57–65, 2017.

[21]    G. M. Husien Amer And D. A. M. Abushaala, “Edge Detection Methods,” 2nd World Symp. Web Appl. Netw., 2015.

[22]    K. Gaurav And U. Ghanekar, “Image Steganography Based On Canny Edge Detection , Dilation Operator And Hybrid Coding,” J. Inf. Secur. Appl., Vol. 41, Pp. 41–51, 2018.

[23]    Y. Meng, Z. Zhang, H. Yin, And T. Ma, “Automatic Detection Of Particle Size Distribution By Image Analysis Based On Local Adaptive Canny Edge Detection And Modi Fi Ed Circular Hough Transform,” Micron, Vol. 106, No. December 2017, Pp. 34–41, 2018.

[24]    T. Tahmid And E. Hossain, “Density Based Smart Traffic Control System Using Canny Edge Detection Algorithm For Congregating Traffic Information,” Int. Conf. Electr. Inf. Commun. Technol., No. December, Pp. 7–9, 2017.

[25]    P. Triono And Murinto, “Aplikasi Pengolahan Citra Untuk Mendeteksi Fraktur Tulang Dengan Metode Deteksi Tepi Canny,” J. Inform., Vol. 9, No. 2, Pp. 1115–1123, 2015.

[26]    M. Al Amin And D. Juniati, “Klasifikasi Kelompok Umur Manusia Berdasarkan Analisis Dimensi Fraktal Box Counting Dari Citra Wajah Dengan Deteksi Tepi Canny,” J. Ilm. Mat., Vol. 2, No. 6, 2017.

[27]    O. R. Indriani, E. J. Kusuma, C. A. Sari, E. H. Rachmawanto, And D. R. I. M. Setiadi, “Tomatoes Classification Using K-Nn Based On Glcm And Hsv Color Space,” Int. Conf. Innov. Creat. Inf. Technol., 2017.

[28]    ?. Öztürk And B. Akdemir, “Sciencedirect Sciencedirect Sciencedirect Application Of Feature Extraction And Classification Methods For Histopathological Image Using Glcm , Application Of Feature Extraction And Classification Methods For And Glcm , Histopathological Image Using A Sft,” Procedia Comput. Sci., Vol. 132, No. Iccids, Pp. 40–46, 2018.

[29]    T. Sutojo, D. R. I. M. Setiadi, P. S. Tirajani, C. A. Sari, And E. H. Rachmawanto, “Cbir For Classification Of Cow Types Using Glcm And Color Features Extraction,” Int. Conf. Inf. Technol. Inf. Syst. Electr. Eng., Pp. 0–5, 2017.

[30]    E. O. Olaniyi, A. A. Adekunle, T. Odekuoye, And A. Khashman, “Automatic System For Grading Banana Using Glcm Texture Feature Extraction And Neural Network Arbitrations,” J. Food Process Eng., No. January, Pp. 1–10, 2017.

[31]    E. W. Hidayat And A. Rahmatulloh, “Identification Of Bacterial Leaf Blight And Brown Spot Disease In Rice Plants Identification Of Bacterial Leaf Blight And Brown Spot Disease In Rice Plants With Image Processing Approach,” J. Ilm. Tek. Elektro Komput. Dan Inform., Vol. 5, No. 2, Pp. 59–67, 2020.

[32]    K. Saputra And S. Wahyuni, “Identifikasi Jenis Tanaman Berdasarkan Ekstraksi Fitur Morfologi Daun Menggunakan K - Nearest Neighbor,” J. Tek. Dan Inform., Vol. 5, No. 1, Pp. 24–29, 2018.

[33]    C. Affonso, A. D. R. Luis, F. H. A. Vieira, And A. C. P. D. L. F. De Carvalho, “Deep Learning For Biological Image Classification,” Expert Syst. Appl., Vol. 85, Pp. 114–122, 2017.

[34]    D. Bertsimas And J. Dunn, “Optimal Classification Trees,” Mach. Learn., Vol. 106, No. 7, Pp. 1039–1082, 2017.

[35]    V. Gupta And A. Bhavsar, “Breast Cancer Histopathological Image Classification?: Is Magnification Important??,” Proc. Ieee Conf. Comput. Vis. Pattern Recognit. Work., Pp. 17–24, 2017.

[36]    G. Alimjan, T. Sun, Y. Liang, H. Jumahun, And Y. Guan, “A New Technique For Remote Sensing Image,” Int. J. Pattern Recognit. Artif. Intell., Vol. 32, No. 7, Pp. 1–23, 2018.

[37]    V. Wasule, “Classification Of Brain Mri Using Svm And Knn Classifier,” Int. Conf. Sensing, Signal Process. Secur. Classif., Pp. 218–223, 2017.

[38]    S. Zhang, X. Li, M. Zong, X. Zhu, And D. Cheng, “Learning K For Knn Classification,” Intell. Syst. Technol, Vol. 8, No. 3, 2017.

[39]    A. Mardhotillah, A. Atfianto, And K. N. Rahmadhani, “Menghitung Jumlah Buah Cabe Berwarna Hijau Menggunakan Metode Transformasi Ruang Warna Rgb,” E-Proceeding Eng., Vol. 5, No. 2, Pp. 3641–3648, 2018.

[40]    L. Kayci And Y. Kaya, “A Vision System For Automatic Identification Of Butterfly Species Using A Grey-Level Co-Occurrence Matrix And Multinomial Logistic Regression,” Zool. Middle East, Vol. 60, No. 1, Pp. 57–64, 2014.

[41]    D. S. Y. Kartika, D. H. Murti, And A. Yuniarti, “Butterfly Image Classification Using Color Quantization Method On Hsv Color Space And Local Binary Pattern,” 3rd Int. Semin. Sci. Technol., Pp. 78–82, 2017.

[42]    D. S. Y. Kartika, D. Herumurti, And A. Yuniarti, “Butterfly Image Classification Using Color Quantization Method On Hsv Color Space And Local Binary Pattern,” Iptek J. Proc. Ser., Vol. 4, No. 1, P. 78, 2018.

[43]    R. Andrian, S. Anwar, M. A. Muhammad, And A. Junaidi, “Identifikasi Kupu-Kupu Menggunakan Ekstraksi Fitur Deteksi Tepi (Edge Detection) Dan Klasifikasi K-Nearest Neighbor (Knn),” J. Tek. Inform. Dan Sist. Inf., Vol. 5, No. 2, Pp. 234–243, 2019.

[44]    N. N. Kamaron Arzar, N. Sabri, N. F. Mohd Johari, A. Amilah Shari, M. R. Mohd Noordin, And S. Ibrahim, “Butterfly Species Identification Using Convolutional Neural Network (Cnn),” 2019 Ieee Int. Conf. Autom. Control Intell. Syst. I2cacis 2019 - Proc., No. June, Pp. 221–224, 2019.

Detail Informasi

Tesis ini ditulis oleh :

  • Nama : MUHAMAD HASAN
  • NIM : 14002203
  • Prodi : Ilmu Komputer
  • Kampus : Kramat Raya
  • Tahun : 2020
  • Periode : I
  • Pembimbing : Dr. Dwiza Riana, S,Si, MM, M.Kom
  • Asisten : Nita Merlina, M.Kom
  • Kode : 0041.S2.IK.TESIS.I.2020
  • Diinput oleh : RKY
  • Terakhir update : 20 Juli 2022
  • Dilihat : 235 kali

TENTANG PERPUSTAKAAN


PERPUSTAKAAN UNIVERSITAS NUSA MANDIRI


E-Library Perpustakaan Universitas Nusa Mandiri merupakan platform digital yang menyedikan akses informasi di lingkungan kampus Universitas Nusa Mandiri seperti akses koleksi buku, jurnal, e-book dan sebagainya.


INFORMASI


Alamat : Jln. Jatiwaringin Raya No.02 RT08 RW 013 Kelurahan Cipinang Melayu Kecamatan Makassar Jakarta Timur

Email : perpustakaan@nusamandiri.ac.id

Jam Operasional
Senin - Jumat : 08.00 s/d 20.00 WIB
Isitirahat Siang : 12.00 s/d 13.00 WIB
Istirahat Sore : 18.00 s/d 19.00 WIB

Perpustakaan Universitas Nusa Mandiri @ 2020