ANALISA PREDIKSI AKURASI DAN KLASIFIKASI ADMINISTRASI MANUFAKTUR

  • HAFIFAH BELLA NOVITASARI
  • 14002265

ABSTRAK

ABSTRAK

 

 

Nama                 :      Hafifah Bella Novitasari

NIM                  :      14002265

Program Studi   :      Ilmu Komputer

Jenjang              :      Strata Dua (S2)

Konsentrasi       :      Data Mining

Judul Tesis        :      “Analisa Prediksi Akurasi dan Klasifikasi Administrasi Manufaktur”

 

 

Setiap perusahaan perlu memiliki manajemen waktu yang baik untuk memenuhi persyaratan pelanggan. Salah satu proses yang perlu diperhatikan adalah proses administrasi manufaktur. PT Cedefindo sebagai cosmetics contract manufacturing, dala menjalankan bisnisnya tentu perlu melakukan perencanaan yang baik untuk meningkatkan kepercataan pelanggan. Tujuan dari penelitian ini adalah untuk melakukan prediksi akurasi dan klasifikasi administrasi manufaktur dengan menggunakan atribut-atribut administrasi dari proses pengajuan pembelian, kedatangan, sampai kesiapan bahan baku dan bahan kemas. Analisa prediksi akurasi dilakukan menggunakan algoritma Regresi Linier, sedangkan untuk klasifikasi dilakukan dengan membandingkan algoritma K-Nearest Neighbor, C4.5 dan Naive Bayes. Hasil Regresi Linier menunjukkan nilai MAE sebesar 0.002 dengan atribut FKB PM dan Siap PM menjadi atribut yang paling berpengaruh pada proses administrasi manufaktur. Untuk hasil klasifikasi menunjukkan bahwa K-Nearet Neighbor dengan Cross Validation merupakan algoritma terbaik dengan akurasi sebesar 97,76%.

 

Kata kunci:

Manufaktur, Data Mining, Klasifikasi, Regresi Linier

KATA KUNCI

Analisis,Prediksi


DAFTAR PUSTAKA

DAFTAR PUSTAKA

 

[1]      S. Yang, T. Arndt, and G. Lanza, “A Flexible Simulation Support for Production Planning and Control in Small and Medium Enterprises,” Procedia CIRP, vol. 56, pp. 389–394, 2016, doi: 10.1016/j.procir.2016.10.062.

[2]      G. Figueira, P. Amorim, L. Guimarães, M. Amorim-Lopes, F. Neves-Moreira, and B. Almada-Lobo, “A decision support system for the operational production planning and scheduling of an integrated pulp and paper mill,” Comput. Chem. Eng., vol. 77, no. June 2019, pp. 85–104, 2015, doi: 10.1016/j.compchemeng.2015.03.017.

[3]      L. Bank et al., “Comparison of simulation-based and optimization-based energy flexible production planning,” Procedia CIRP, vol. 81, pp. 294–299, 2019, doi: 10.1016/j.procir.2019.03.051.

[4]      A. Hees and G. Reinhart, “Approach for production planning in reconfigurable manufacturing systems,” Procedia CIRP, vol. 33, pp. 70–75, 2015, doi: 10.1016/j.procir.2015.06.014.

[5]      W. Gata, H. B. Novitasari, R. Nurfalah, R. Hernawati, and M. J. Shidiq, “Analysis of Regression Algorithm to Predict Administration, Production, and Delivery to Accuracy of Delivery of Products in Cosmetic Industry,” IOP Conf. Ser. Mater. Sci. Eng., vol. 662, no. 7, 2019, doi: 10.1088/1757-899X/662/7/072006.

[6]      H. B. Novitasari et al., “K-nearest neighbor analysis to predict the accuracy of product delivery using administration of raw material model in the cosmetic industry (PT Cedefindo),” J. Phys. Conf. Ser., vol. 1367, no. 1, pp. 0–6, 2019, doi: 10.1088/1742-6596/1367/1/012008.

[7]      S. Sodsee, “Predicting caesarean section by applying nearest neighbor analysis,” Procedia Comput. Sci., vol. 31, pp. 5–14, 2014, doi: 10.1016/j.procs.2014.05.239.

[8]      L. S. Katore, B. S. Ratnaparkhi, and J. S. Umale, “Novel professional career prediction and recommendation method for individual through analytics on personal traits using C4.5 algorithm,” Glob. Conf. Commun. Technol. GCCT 2015, pp. 503–506, 2015, doi: 10.1109/GCCT.2015.7342798.

[9]      K. Vembandasamy, R. Sasipriya, and E. Deepa, “Heart Diseases Detection Using Naive Bayes Algorithm,” Int. J. Innov. Sci. Eng. Technol., vol. 2, no. 9, pp. 441–444, 2015.

[10]    D. R. Amancio et al., “A systematic comparison of supervised classifiers,” PLoS One, vol. 9, no. 4, pp. 1–13, 2014, doi: 10.1371/journal.pone.0094137.

[11]    H. Siahaan, H. Mawengkang, S. Efendi, A. Wanto, and A. Perdana Windarto, “Application of Classification Method C4.5 on Selection of Exemplary Teachers,” J. Phys. Conf. Ser., vol. 1235, no. 1, 2019, doi: 10.1088/1742-6596/1235/1/012005.

[12]    I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical Machine Learning Tools and Techniques. 2016.

[13]    M. Mirmozaffari, A. Alinezhad, and A. Gilanpour, “Data Mining Apriori Algorithm for Heart Disease Prediction,” Int. J. Comput. Commun. Instrum. Eng., vol. 4, no. 1, 2017, doi: 10.15242/ijccie.dir1116010.

[14]    H. Hashim, A. A.Talab, A. Satty, and S. A.Talab, “Data Mining Methodologies to Study Student’s Academic Performance Using the C4.5 Algorithm,” Int. J. Comput. Sci. Appl., vol. 5, no. 2, pp. 59–68, 2015, doi: 10.5121/ijcsa.2015.5206.

[15]    P. Kaur, M. Singh, and G. S. Josan, “Classification and Prediction Based Data Mining Algorithms to Predict Slow Learners in Education Sector,” Procedia Comput. Sci., vol. 57, pp. 500–508, 2015, doi: 10.1016/j.procs.2015.07.372.

[16]    D. T. Larose, Discovering Knowledge in Data: An Introduction to Data Mining. 2005.

[17]    R. Vulandari, Data Mining Teori dan Aplikasi Rapidminer. Surakarta, Indonesia: Penerbit Gava Media, 2017.

[18]    G. M. Fitzmaurice, “Regression,” Diagnostic Histopathology. 2016, doi: 10.1016/j.mpdhp.2016.06.004.

[19]    K. A. Marill, “Advanced Statistics: Linear Regression, Part II: Multiple Linear Regression,” Acad. Emerg. Med., 2004, doi: 10.1197/j.aem.2003.09.006.

[20]    S. Sulistyono and W. Sulistiyowati, “Peramalan Produksi dengan Metode Regresi Linier Berganda,” PROZIMA (Productivity, Optim. Manuf. Syst. Eng., vol. 1, no. 2, p. 82, 2018, doi: 10.21070/prozima.v1i2.1350.

[21]    P. Mulak and N. Talhar, “Analysis of Distance Measures Using K-Nearest Neighbor Algorithm on KDD Dataset,” Int. J. Sci. Res., vol. 4, no. 7, pp. 2319–7064, 2015, [Online]. Available: www.ijsr.net.

[22]    K. Chomboon, P. Chujai, P. Teerarassammee, K. Kerdprasop, and N. Kerdprasop, “An Empirical Study of Distance Metrics for k-Nearest Neighbor Algorithm,” pp. 280–285, 2015, doi: 10.12792/iciae2015.051.

[23]    S. D. Jadhav and H. P. Channe, “Comparative Study of K-NN, Naive Bayes and Decision Tree Classification Techniques,” Int. J. Sci. Res., vol. 5, no. 1, pp. 1842–1845, 2016, doi: 10.21275/v5i1.nov153131.

[24]    M. M. S and A. Yasar, “Intelligent Systems and Applications in Engineering Performance Analysis of ANN and Naive Bayes Classification Algorithm for Data Classification,” pp. 0–1, 2019, doi: 10.1039/b000000x.

[25]    T. Kusrini., Lutfi, Emha, Algoritma Data Mining. Yogyakarta, Indonesia: Andi Offset, 2009.

[26]    P. Chapman et al., Crisp-Dm 1.0. 2000.

[27]    B. Jagla, B. Wiswedel, and J. Y. Coppée, “Extending KNIME for next-generation sequencing data analysis,” Bioinformatics, vol. 27, no. 20, pp. 2907–2909, 2011, doi: 10.1093/bioinformatics/btr478.

[28]    M. R. Berthold et al., “KNIME: The konstanz information miner,” 4th Int. Ind. Simul. Conf. 2006, ISC 2006, vol. 11, no. 1, pp. 58–61, 2006, doi: 10.1007/978-3-540-78246-9_38.

[29]    S. N. Alfisahrin, “Komparasi Algoritma C4.5, Naive Bayes dan Neural Network Untuk Memprediksi Penyakit Jantung,” Pascasarjana Magister Ilmu Komputer STMIK Nusa Mandiri, 2014.

[30]    F. Gorunescu, “Data mining: Concepts, models and techniques,” Intell. Syst. Ref. Libr., 2011, doi: 10.1007/978-3-642-19721-5.

[31]    M. Bramer, Principle of Data Mining Second Edition. London, Inggris: Springer, 2013.

[32]    K. Hastuti, “Analisis komparasi algoritma klasifikasi data mining untuk prediksi mahasiswa non aktif,” Semin. Nas. Teknol. Inf. Komun. Terap., 2012.

[33]    H. M and S. M.N, “A Review on Evaluation Metrics for Data Classification Evaluations,” Int. J. Data Min. Knowl. Manag. Process, vol. 5, no. 2, pp. 01–11, 2015, doi: 10.5121/ijdkp.2015.5201.

[34]    H. Setiawan, K. Mukiman, Satria, S. Hanadwiputra, and A. Suwarno, “C4.5 Classification Algorithm Based on Particle Swarm Optimization to Determine the Delay Order Production Pattern,” IOP Conf. Ser. Mater. Sci. Eng., vol. 662, no. 2, 2019, doi: 10.1088/1757-899X/662/2/022085.

[35]    Y. Chen and Y. Hao, “A feature weighted support vector machine and K-nearest neighbor algorithm for stock market indices prediction,” Expert Syst. Appl., vol. 80, pp. 340–355, 2017, doi: 10.1016/j.eswa.2017.02.044.

[36]    E. Rahmawati, S. Hadianti, M. F. Akbar, and W. Gata, “Vendor Online,” pp. 224–231, 2018.

[37]    S. Hadianti1, E. Rahmawati, I. Kurniawan, and W. Gata, “Memprediksi Pembayaran Biaya Kursus Siswa Enter (English Center) Dengan Algoritma K-Nn,” Semin. Nas. Teknol. Inf. Univ. Ibn Khaldun Bogor, no. 18, p. 31908575, 2018, [Online]. Available: www.antaranews.com,2016.

[38]    Siswanto, Abdussomad, W. Gata, N. K. Wardhani, G. Gata, and B. H. Prasetyo, “The feasibility of credit using C4.5 algorithm based on particle swarm optimization prediction,” Int. Conf. Electr. Eng. Comput. Sci. Informatics, pp. 416–421, 2019, doi: 10.23919/EECSI48112.2019.8977074.

[39]    L. Marlina, A. Putera, and U. Siahaan, “Data Mining Classification Comparison ( Naïve Bayes and C4 . 5 Algorithms ),” vol. 38, no. 7, pp. 380–383, 2016.

[40]    B. A. Kumar, R. Jairam, S. S. Arkatkar, and L. Vanajakshi, “Real time bus travel time prediction using k-NN classifier,” Transp. Lett., vol. 11, no. 7, pp. 362–372, 2019, doi: 10.1080/19427867.2017.1366120.

[41]    E. Miranda, E. Irwansyah, A. Y. Amelga, M. M. Maribondang, and M. Salim, “Detection of Cardiovascular Disease Risk ’ s Level for Adults Using Naive Bayes Classifier,” vol. 22, no. 3, pp. 196–205, 2016.

[42]    K. Saxena and R. Sharma, “Diabetes Mellitus Prediction System Evaluation Using C4 . 5 Rules and Partial Tree,” pp. 1–6, 2015.

[43]    M. W. Pertiwi and R. E. Indrajit, “Metode Regresi Linier Untuk Prediksi Pengadaan Inventaris Barang,” pp. 27–30, 2017.

Detail Informasi

Tesis ini ditulis oleh :

  • Nama : HAFIFAH BELLA NOVITASARI
  • NIM : 14002265
  • Prodi : Ilmu Komputer
  • Kampus : Kramat Raya
  • Tahun : 2020
  • Periode : I
  • Pembimbing : Dr. Windu Gata, M.Kom
  • Asisten :
  • Kode : 0013.S2.IK.TESIS.I.2020
  • Diinput oleh : RKY
  • Terakhir update : 12 Juli 2022
  • Dilihat : 257 kali

TENTANG PERPUSTAKAAN


PERPUSTAKAAN UNIVERSITAS NUSA MANDIRI


E-Library Perpustakaan Universitas Nusa Mandiri merupakan platform digital yang menyedikan akses informasi di lingkungan kampus Universitas Nusa Mandiri seperti akses koleksi buku, jurnal, e-book dan sebagainya.


INFORMASI


Alamat : Jln. Jatiwaringin Raya No.02 RT08 RW 013 Kelurahan Cipinang Melayu Kecamatan Makassar Jakarta Timur

Email : perpustakaan@nusamandiri.ac.id

Jam Operasional
Senin - Jumat : 08.00 s/d 20.00 WIB
Isitirahat Siang : 12.00 s/d 13.00 WIB
Istirahat Sore : 18.00 s/d 19.00 WIB

Perpustakaan Universitas Nusa Mandiri @ 2020