Analisis Sentimen Cyberbullying pada Sosial Media Instagram Menggunakan Metode Support Vector Machine

  • DAMAR NUGRAHA

ABSTRAK

ABSTRACT

Damar Nugraha (12190281), Analysis of Cyberbullying Sentiment on Instagram Social Media Using the Support Vector Machine Method ”.

Social media includes a digital platform that allows users to interact, exchange information, and create content that other users can access and share via the internet. Social media users can connect with people around the world and build social networks online. Many well-known social media such as Facebook, Instagram, Twitter, LinkedIn, TikTok and YouTube. Today, social media has many effects on the way we live and do business today, and is widely used for purposes such as communication, promotion, marketing, and entertainment. Instagram users can criticize photos or videos that people post in the comments section. Comments made in the form of sentences are used as input and output are used in the form of identification sentences that contain cyberbullying and non-cyberbullying Instagram is a social media platform that allows users to share short videos and photos with their followers both publicly and privately. Instagram allows users to expand their social network by following other people's accounts and also allows users to interact with uploaded content through various options such as "like", "comment", "repost", and so on. The Support Vector Machine algorithm can be used to analyze online bullying sentiments in Instagram comments. The classification results are in the form of positive and negative classes, divided into positive feelings about cyberbullying and negative feelings about cyberbullying. The use of 400 datasets to conduct training and form a classification model resulted in an accuracy of 84.25%, a precision of 80.22%, a Recall of 92.50% and an AUC value of 0.928.

KATA KUNCI

Social Media,Support Vector Machine Algorithm


DAFTAR PUSTAKA

DAFTAR PUSTAKA

[1] L. Afina, H. Raudhoti, A. Herdiani, and D. A. Romadhony, “Identifikasi Cyberbullying pada Kolom Komentar Instagram dengan Metode Support Vector Machine dan Semantic Similarity (Cyberbullying Identification on Instagram Comment Using Support Vector Machine and Semantic Similarity ),” J-Cosine, vol. 4, no. 1, pp. 1–8, 2020, [Online]. Available: http://jcosine.if.unram.ac.id/

[2] S. P. Karyanti, M.Pd. & Aminudin, Cyberbullying & Body Shaming. 2019.

[3] M. Jubaidi and N. Fadilla, “Pengaruh Fenomena Cyberbullying Sebagai Cyber-Crime Di Instagram Dan Dampak Negatifnya,” Shaut Al-Maktabah J. Perpustakaan, Arsip dan Dokumentasi, vol. 12, no. 2, pp. 117–134, 2020, doi: 10.37108/shaut.v12i2.327.

[4] S. Widaningsih, “Perbandingan Metode Data Mining Untuk Prediksi Nilai Dan Waktu Kelulusan Mahasiswa Prodi Teknik Informatika Dengan Algoritma C4,5, Naïve Bayes, Knn Dan Svm,” J. Tekno Insentif, vol. 13, no. 1, pp. 16–25, 2019, doi: 10.36787/jti.v13i1.78.

[5] A. Salim, W. Gata, M. H. Fakhriza, C. S. Rhayu, and A. Budiarto, “Analisis Sentiment Instagram Menggunakan Metode Support Vector Machine ( SVM ) Berbasis Grid Search Algorithm ( GSA ),” pp. 466–472.

[6] W. A. Luqyana, I. Cholissodin, and R. S. Perdana, “Analisis Sentimen Cyberbullying pada Komentar Instagram dengan Metode Klasifikasi Support Vector Machine,” vol. 2, no. 11, pp. 4704–4713, 2018.

[7] U. F. Para, F. Hariadi, A. C. T. S. Si, and M. Kom, “Sentimen Analisis Tradisi 56 Kawin Tangkap Di Daerah Sumba Menggunakan Metode SVM,” vol. 12, pp. 84–95, 2023.

[8] S. A. Aaputra, Didi Rosiyadi, Windu Gata, and Syepry Maulana Husain, “Sentiment Analysis Analysis of E-Wallet Sentiments on Google Play Using the Naive Bayes Algorithm Based on Particle Swarm Optimization,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 3, no. 3, pp. 377–382, 2019, doi: 10.29207/resti.v3i3.1118.

[9] A. A. C. Onno W. Purbo ; editor, Text mining : analisis medsos, kekuatan brand dan intelijen di Internet. 2019.

[10] Elta Sonalitha Salnan Ratih Asriningtias Anis Zubair, Text mining / Elta Sonalitha, Salnan Ratih Asriningtias, Anis Zubair. 2021.

[11] M. A. Muslim et al., Data Mining Algoritma C4.5. 2019, 2019.

[12] A. Muhammadin and I. A. Sobari, “Analisis Sentimen Pada Ulasan Aplikasi Kredivo Dengan Algoritma Svm Dan Nbc,” Reputasi J. Rekayasa Perangkat Lunak, vol. 2, no. 2, pp. 85–91, 2021, doi: 10.31294/reputasi.v2i2.785.

[13] S. I. Publishing, Text Mining. 2019.

[14] M. F. Rizki, K. Auliasari, and R. Primaswara Prasetya, “Analisis Sentiment Cyberbullying Pada Sosial Media Twitter Menggunakan Metode Support Vector Machine,” JATI (Jurnal Mhs. Tek. Inform., vol. 5, no. 2, pp. 548–556, 2021, doi: 10.36040/jati.v5i2.3808.

[15] D. Ardiansyah and W. Walim, “Algoritma c4.5 untuk klasifikasi calon peserta lomba cerdas cermat siswa smp dengan menggunakan aplikasi rapid miner,” J. Inkofar, vol. 1, no. 2, pp. 5–12, 2018. 57

[16] M. Hengki and M. Wahyudi, “Klasifikasi Algoritma Naïve Bayes dan SVM Berbasis PSO Dalam Memprediksi Spam Email Pada Hotline-Sapto,” Paradig. - J. Komput. dan Inform., vol. 22, no. 1, pp. 61–67, 2020, doi: 10.31294/p.v22i1.7842.

[17] D. N. Sari and A. Basit, “Media Sosial Instagram Sebagai Media Informasi Edukasi,” Persepsi Commun. J., vol. 3, no. 1, pp. 23–36, 2020, doi: 10.30596/persepsi.v3i1.4428.

[18] M. Syarifuddinn, “Analisis Sentimen Opini Publik Mengenai Covid-19 Pada Twitter Menggunakan Metode Naïve Bayes Dan Knn,” INTI Nusa Mandiri, vol. 15, no. 1, pp. 23–28, 2020, doi: 10.33480/inti.v15i1.1347.

[19] S. N. J. Fitriyyah, N. Safriadi, and E. E. Pratama, “Analisis Sentimen Calon Presiden Indonesia 2019 dari Media Sosial Twitter Menggunakan Metode Naive Bayes,” J. Edukasi dan Penelit. Inform., vol. 5, no. 3, p. 279, 2019, doi: 10.26418/jp.v5i3.34368.

[20] L. Hermawan and M. Bellaniar Ismiati, “Pembelajaran Text Preprocessing berbasis Simulator Untuk Mata Kuliah Information Retrieval,” J. Transform., vol. 17, no. 2, p. 188, 2020, doi: 10.26623/transformatika.v17i2.1705.

[21] A. Muhammad Iqbal, G. Dudih, and S. Falentino, “Analisis Sentiment Masyarakat terhadap Kasus Covid-19 pada Media Sosial Youtube dengan Metode Naive bayes,” J. Sains Komput. Inform. (J-SAKTI, vol. 5, no. 2, pp. 807–814, 2021.

[22] M. A. Rofiqi, A. C. Fauzan, A. P. Agustin, and A. A. Saputra, “Implementasi Term-Frequency Inverse Document Frequency (TF-IDF) Untuk Mencari 58 Relevansi Dokumen Berdasarkan Query,” Ilk. J. Comput. Sci. Appl. Informatics, vol. 1, no. 2, pp. 58–64, 2019, doi: 10.28926/ilkomnika.v1i2.18.

[23] A. H. Anshor and A. Safuwan, “Analisis Sentimen Opini Warganet Twitter Terhadap Tes Screening Genose Pendeteksi Virus Covid-19 Menggunakan Metode Naïve Bayes Berbasis Particle Swarm Optimization,” J. Inform. Teknol. dan Sains, vol. 5, no. 1, pp. 170–178, 2023, doi: 10.51401/jinteks.v5i1.2229.

[24] I. R. Afandi, F. N. Hasan, A. A. Rizki, N. Pratiwi, and Z. Halim, “Analisis Sentimen Opini Masyarakat Terkait Pelayanan Jasa Ekspedisi Anteraja Dengan Metode Naive Bayes,” J. Linguist. Komputasional, vol. 5, no. 2, pp. 63–70, 2022, doi: https://doi.org/10.26418/jlk.v5i2.107.

[25] J. A. Septian, T. M. Fachrudin, and A. Nugroho, “Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor,” J. Intell. Syst. Comput., vol. 1, no. 1, pp. 43–49, 2019, doi: 10.52985/insyst.v1i1.36.

[26] R. L. Hasanah, M. Hasan, W. E. Pangesti, F. F. Wati, and W. Gata, “Klasifikasi Penerima Dana Bantuan Desa Menggunakan Metode Knn (KNearest Neighbor),” J. Techno Nusa Mandiri, vol. 16, no. 1, pp. 1–6, 2019, doi: 10.33480/techno.v16i1.25. 59

[27] P. Arsi and R. Waluyo, “Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM),” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 1, p. 147, 2021, doi: 10.25126/jtiik.0813944.

Detail Informasi

Skripsi ini ditulis oleh :

  • NIM : 12190281
  • Nama : DAMAR NUGRAHA
  • Prodi : Informatika
  • Kampus : Margonda
  • Tahun : 2023
  • Periode : I
  • Pembimbing : Puji Astuti, M.Kom
  • Asisten :
  • Kode : 0005.S1.IF.SKRIPSI.I.2023
  • Diinput oleh : NZH
  • Terakhir update : 07 Desember 2023
  • Dilihat : 149 kali

TENTANG PERPUSTAKAAN


PERPUSTAKAAN UNIVERSITAS NUSA MANDIRI


E-Library Perpustakaan Universitas Nusa Mandiri merupakan platform digital yang menyedikan akses informasi di lingkungan kampus Universitas Nusa Mandiri seperti akses koleksi buku, jurnal, e-book dan sebagainya.


INFORMASI


Alamat : Jln. Jatiwaringin Raya No.02 RT08 RW 013 Kelurahan Cipinang Melayu Kecamatan Makassar Jakarta Timur

Email : perpustakaan@nusamandiri.ac.id

Jam Operasional
Senin - Jumat : 08.00 s/d 20.00 WIB
Isitirahat Siang : 12.00 s/d 13.00 WIB
Istirahat Sore : 18.00 s/d 19.00 WIB

Perpustakaan Universitas Nusa Mandiri @ 2020