KOMPARASI AKURASI ARSITEKTUR MOBILENETV1 DAN RESNET MENGGUNAKAN META-LEARNING MENDETEKSI KUCING BERBASIS CLOUD COMPUTING
- FAIZ OCTA REYNALDI
ABSTRAK
ABSTRAK
Faiz Octa Reynaldi (12190370). KOMPARASI AKURASI ARSITEKTUR MOBILENETV1 DAN RESNET MENGGUNAKAN META-LEARNING MENDETEKSI HEWAN KUCING BERBASIS CLOUD COMPUTING.
Object Detection memiliki beberapa kendala saat proses training seperti banyaknya data yang harus dilatih, menggunakan waktu cukup lama untuk dilatih dan lain-lain. Pada penelitian ini, penulis melakukan komparasi akurasi dan average loss training arsitektur SSD MobileNetV1 dan SSD ResNet menggunakan Pre-Trained model dengan metode Few-Shot Learning menggunakan Hold-Out Cross Validation untuk mendeteksi Objek Hewan Kucing Hitam dan Objek Hewan Kucing Putih dengan pengambilan data secara rill dari metode observasi Jakarta Vet Shop dan hanya membutuhkan sedikit data untuk dilakukannya proses training. Penelitian ini dilakukan dengan cara menggunakan Cloud Computing seperti Google Colab sebagai media untuk membandingkan akurasi arsitektur SSD MobileNetV1 dan SSD ResNet, Hasil analisa dalam penelitian ini adalah SSD ResNet memiliki akurasi yang tinggi dengan nilai rata-rata 100% pada kucing hitam dan nilai rata-rata 97.9% pada kucing putih sementara untuk SSD MobileNetV1 memiliki nilai rata-rata 99.66666667% pada kucing hitam dan 78.733% pada kucing putih. Kemudian SD MobileNetV1 memiliki Train Loss lebih besar dengan nilai rata-rata 0.003923 pada Kucing Hitam dan nilai rata-rata 0.0059 Kucing Putih jika dibandingkan dengan SSD ResNet dengan nilai rata-rata 0.030263 pada Kucing Hitam dan nilai rata-rata 0.00413 pada Kucing Putih.
Kata Kunci : Object Detection, Transfer Learning, Cloud Computing, Few-Shot Learning, Hewan Kucing
KATA KUNCI
Analisis
DAFTAR PUSTAKA
DAFTAR PUSTAKA
[1] A. Syaikhoni and A. Ariyadi, “Deteksi Objek Dengan Tensorflow Object Detection Api,” Binus, 2016. https://mti.binus.ac.id/2018/12/26/deteksi-objek-dengan-tensorflow-object-detection-api/.
[2] L. Budiyanti, “Computer Vision: Apa dan Mengapa Itu Penting?,” Docotel. 2020, [Online]. Available: https://blog.docotel.com/computer-vision-apa-dan-mengapa-itu-penting/.
[3] A. Wibowo, “10 Fold-Cross Validation,” 2017, 2017. https://mti.binus.ac.id/2017/11/24/10-fold-cross-validation/ (accessed Jul. 29, 2019).
[4] F. G. Mohammadi, M. H. Amini, and H. R. Arabnia, “An Introduction to Advanced Machine Learning: Meta Learning Algorithms, Applications and Promises,” arXiv, 2019.
[5] M. J. Garbade, “Understanding few-shot learning in machine learning,” Medium, vol. 28, no. 2. pp. 1–43, 2018, [Online]. Available: https://medium.com/quick-code/understanding-few-shot-learning-in-machine-learning-bede251a0f67.
[6] Y. Liu, J. W. Bi, and Z. P. Fan, “Multi-class sentiment classification: The experimental comparisons of feature selection and machine learning algorithms,” Expert Syst. Appl., vol. 80, pp. 323–339, 2017, doi: 10.1016/j.eswa.2017.03.042.
[7] “Pengertian Hipotesis adalah_ Jenis, Contoh, Fungsi dan Kedudukannya.” .
[8] N. Damayanti, “Pengertian Kucing Adalah Hewan Mamalia Karinovora,” 20 Februari, 2019. https://www.kucingklik.com/kucing/.
[9] Pamungkas Adi, “Pengolahan Citra Digital Pemrograman Matlab,” Pemrogramanmatlab. 2017, [Online]. Available: https://pemrogramanmatlab.com/2017/07/26/pengolahan-citra-digital/.
[10] D. Putra, “Pengolahan Citra Digital,” no. April. p. 420, 2010, [Online]. Available: https://www.kajianpustaka.com/2016/04/pengolahan-citra-digital.html.
[11] “Apa Itu Image Processing - Immersa Lab.” [Online]. Available: https://www.immersa-lab.com/apa-itu-image-processing.htm.
[12] E. M. Learners, “Mengenal Machine Learning,” Medium.Com\. 2019, [Online]. Available: https://medium.com/evolve-machine-learners/mengenal-machine-learning-6c4a48db48b0.
[13] “Garbage In, Garbage Out: How to Prepare Your Data Set for Machine Learning.” https://www.ciklum.com/blog/garbage-in-garbage-out-how-to-prepare-your-data-set-for-machine-learning/ (accessed Dec. 26, 2020).
[14] Chikal Ulung, “Perbedaan Antara Supervised dan Unsupervised Learning | by Chikal Ulung | Machine Learning Kelompok 2 | Medium.” 2019, [Online]. Available: https://medium.com/machine-learning-kelompok-2/perbedaan-antara-supervised-dan-unsupervised-learning-fcb18f90e89f.
[15] Qolbiyatul Lina, “Apa itu Convolutional Neural Network? | by QOLBIYATUL LINA | Medium.” 2019, [Online]. Available: https://medium.com/@16611110/apa-itu-convolutional-neural-network-836f70b193a4.
[16] “Pengenalan Deep Learning Part 7?: Convolutional Neural Network (CNN) | by Samuel Sena | Medium.” https://medium.com/@samuelsena/pengenalan-deep-learning-part-7-convolutional-neural-network-cnn-b003b477dc94 (accessed Dec. 31, 2020).
[17] “ML.NET Series: Klasifikasi Gambar dengan Transfer Learning (Onnx dan Tensorflow) – Makers.ID.” http://makers.id/2019/07/29/ml-net-series-klasifikasi-gambar-dengan-transfer-learning-onnx-dan-tensorflow/ (accessed Dec. 09, 2020).
[18] “Transfer Learning | Pretrained Models in Deep Learning.” https://www.analyticsvidhya.com/blog/2017/06/transfer-learning-the-art-of-fine-tuning-a-pre-trained-model/ (accessed Dec. 29, 2020).
[19] J. Deng, X. Li, and Y. Fang, “Few-shot object detection on remote sensing images,” arXiv, pp. 1–12, 2020.
[20] “What is Few-Shot Learning_ _ by Jelaleddin Sultanov _ AI3 _ Theory, Practice, Business _ Medium.” [Online]. Available: https://medium.com/ai3-theory-practice-business/what-is-few-shot-learning-4b2842646b47.
[21] “What is Meta-Learning_ _ Unite.” [Online]. Available: https://www.unite.ai/what-is-meta-learning/.
[22] T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey, “Meta-Learning in Neural Networks: A Survey,” arXiv, pp. 1–20, 2020.
[23] T. Beysolow II, Applied Natural Language Processing with Python Learning and Deep Learning Language Processing. 2018.
[24] idCloudHost, “Mengenal Apa Itu Bahasa Pemrograman Python Dan Cara Belajarnya,” idCloudHost. 2020, [Online]. Available: https://idcloudhost.com/mengenal-apa-itu-bahasa-pemrograman-python-dan-cara-belajarnya/.
[25] Serdar Yegulalp, “What is TensorFlow? The machine learning library explained | InfoWorld,” InfoWorld. 2019, [Online]. Available: https://www.infoworld.com/article/3278008/what-is-tensorflow-the-machine-learning-library-explained.html.
[26] “Mengenal Google Colab - Structilmy.” [Online]. Available: https://structilmy.com/2019/05/mengenal-google-colab/.
[27] Cloudhost, “Mengenal Apa itu Cloud Computing?: Defenisi, Fungsi, dan Cara Kerja,” Cloudhost. 2019, [Online]. Available: https://idcloudhost.com/mengenal-apa-itu-cloud-computing-defenisi-fungsi-dan-cara-kerja/.
[28] F. E. Ramadhan, “Penerapan Image Classification Dengan Pre-Trained Model Mobilenet Dalam Client-Side Machine Learning,” pp. 1–133, 2020.
[29] “MobileNet: Deteksi Objek pada Platform Mobile | by Rizqi Okta Ekoputris | Nodeflux | Medium.” [Online]. Available: https://medium.com/nodeflux/mobilenet-deteksi-objek-pada-platform-mobile-bbbf3806e4b3.
[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 770–778, 2016, doi: 10.1109/CVPR.2016.90.
[31] K. H. Mahmud, Adiwijaya, and S. Al Faraby, “Klasifikasi Citra Multi-Kelas Menggunakan Convolutional Neural Network,” e-Proceeding Eng., vol. 6, no. 1, pp. 2127–2136, 2019.
[32] Y. Wang, Q. Yao, J. Kwok, and L. M. Ni, “Generalizing from a Few Examples: A Survey on Few-Shot Learning,” vol. 1, no. 1, pp. 1–34, Apr. 2019, [Online]. Available: http://arxiv.org/abs/1904.05046.
[33] “Pengertian Flowchart Dan Jenis – Jenisnya | INFORMATIKALOGI.” https://informatikalogi.com/pengertian-flowchart-dan-jenis-jenisnya/ (accessed Dec. 15, 2020).
[34] “Confusion Matrix.” https://socs.binus.ac.id/2020/11/01/confusion-matrix/ (accessed Dec. 24, 2020).
[35] “Mengenal Accuracy, Precision, Recall dan Specificity serta yang diprioritaskan dalam Machine Learning | by Resika Arthana | Medium.” https://rey1024.medium.com/mengenal-accuracy-precission-recall-dan-specificity-serta-yang-diprioritaskan-b79ff4d77de8 (accessed Dec. 25, 2020).
[36] “Perbedaan Bias dan Variance dalam Machine learning - Information Communication Technology.” https://www.uc.ac.id/ict/perbedaan-bias-dan-variance-dalam-machine-learning/ (accessed Dec. 26, 2020).
[37] “Hold-out vs. Cross-validation in Machine Learning | by Eijaz Allibhai | Medium.” https://medium.com/@eijaz/holdout-vs-cross-validation-in-machine-learning-7637112d3f8f (accessed Dec. 29, 2020).
[38] “Mengenal MSCOCO Dataset dalam Penerapan di Algoritma Object Detection YOLO | by Haiqal Muhamad Alfarisi | Medium.” https://haiqalmuhamadalfarisi.medium.com/mengenal-mscoco-dataset-dalam-penerapan-di-algoritma-object-detection-yolo-f413d835362 (accessed Dec. 29, 2020).
[39] T. Y. Lin et al., “Microsoft COCO: Common objects in context,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8693 LNCS, no. PART 5, pp. 740–755, 2014, doi: 10.1007/978-3-319-10602-1_48.
[40] S. R. DEWI, “Deep Learning Object Detection Pada Video,” Deep Learn. Object Detect. Pada Video Menggunakan Tensorflow Dan Convolutional Neural Netw., pp. 1–60, 2018, [Online]. Available: https://dspace.uii.ac.id/bitstream/handle/123456789/7762/14611242_Syarifah Rosita Dewi_Statistika.pdf?sequence=1.
[41] R. Hayati, “Pengertian Instrumen Penelitian, Bentuk, dan Contohnya,” Penelitianilmiah.Com, 2019. https://penelitianilmiah.com/instrumen-penelitian/.
[42] H. E. Puteri, “Menentukan Populasi dan Sampel,” Menentukan Popul. Dan Sampel Dalam Riset-Riset Ekon. Dan Perbank. Islam, no. April, 2020, doi: 10.13140/RG.2.2.28776.01285.
[43] “6 macam metode analisis data yang perlu diketahui.” https://www.ekrut.com/media/macam-macam-metode-analisis-data (accessed Dec. 18, 2020).
Detail Informasi
Skripsi ini ditulis oleh :
- NIM : 12190370
- Nama : FAIZ OCTA REYNALDI
- Prodi : Informatika
- Kampus : Kramat Raya
- Tahun : 2020
- Periode : II
- Pembimbing : Omar Pahlevi, M.Kom
- Asisten : Indah Suryani, M.Kom
- Kode : 0050.S1.TI.SKRIPSI.II.2020
- Diinput oleh : RKY
- Terakhir update : 23 Juni 2022
- Dilihat : 89 kali
TENTANG PERPUSTAKAAN
E-Library Perpustakaan Universitas Nusa Mandiri merupakan
platform digital yang menyedikan akses informasi di lingkungan kampus Universitas Nusa Mandiri seperti akses koleksi buku, jurnal, e-book dan sebagainya.
INFORMASI
Alamat : Jln. Jatiwaringin Raya No.02 RT08 RW 013 Kelurahan Cipinang Melayu Kecamatan Makassar Jakarta Timur
Email : perpustakaan@nusamandiri.ac.id
Jam Operasional
Senin - Jumat : 08.00 s/d 20.00 WIB
Isitirahat Siang : 12.00 s/d 13.00 WIB
Istirahat Sore : 18.00 s/d 19.00 WIB
Perpustakaan Universitas Nusa Mandiri @ 2020