-
Materials data science : Introduction to Data Mining, Machine Learning, and Data-driven predictions for materials science and engineering
This text covers all of the data science, machine learning, and deep learning topics relevant to materials science and engineering, accompanied by numerous examples and applications. Almost all ...
- Tersedia di Perpustakaan kampus Margonda,
Silahkan Login untuk dapat Melakukan Peminjaman Online
Kode Buku | : | 250078 |
Kode Klasifikasi | : | 620.1126 |
Judul Buku | : | Materials data science : Introduction to Data Mining, Machine Learning, and Data-driven predictions for materials science and engineering |
Edisi | : | 1 |
Penulis | : | Sandfelt Stefan |
Penerbit | : | Springer |
Bahasa | : | Inggris |
Tahun | : | 2024 |
ISBN | : | 978-3-031-46565-9 |
Tajuk Subjek | : | Materials Data Science |
Deskripsi | : | xxiii, 608 hlm; 29 cm |
Eksemplar | : | 1 |
Stok | : | 1 |
Petugas Input | : | Suagam. S.Kom |
This text covers all of the data science, machine learning, and deep learning topics relevant to materials science and engineering, accompanied by numerous examples and applications. Almost all methods and algorithms introduced are implemented “from scratch” using Python and NumPy.
The second part provides an in-depth introduction of (statistical) machine learning. It begins with outlining fundamental concepts and proceeds to explore a variety of supervised learning techniques for regression and classification, including advanced methods such as kernel regression and support vector machines. The section on unsupervised learning emphasizes principal component analysis, and also covers manifold learning (t-SNE and UMAP) and clustering techniques. Additionally, feature engineering, feature importance, and cross-validation are introduced.
The second part provides an in-depth introduction of (statistical) machine learning. It begins with outlining fundamental concepts and proceeds to explore a variety of supervised learning techniques for regression and classification, including advanced methods such as kernel regression and support vector machines. The section on unsupervised learning emphasizes principal component analysis, and also covers manifold learning (t-SNE and UMAP) and clustering techniques. Additionally, feature engineering, feature importance, and cross-validation are introduced.
Terkait Subjek Buku yang sama
TENTANG PERPUSTAKAAN

E-Library Perpustakaan Universitas Nusa Mandiri merupakan
platform digital yang menyedikan akses informasi di lingkungan kampus Universitas Nusa Mandiri seperti akses koleksi buku, jurnal, e-book dan sebagainya.
INFORMASI
Alamat : Jln. Jatiwaringin Raya No.02 RT08 RW 013 Kelurahan Cipinang Melayu Kecamatan Makassar Jakarta Timur
Email : perpustakaan@nusamandiri.ac.id
Jam Operasional
Senin - Jumat : 08.00 s/d 20.00 WIB
Isitirahat Siang : 12.00 s/d 13.00 WIB
Istirahat Sore : 18.00 s/d 19.00 WIB
Perpustakaan Universitas Nusa Mandiri @ 2020